• Title/Summary/Keyword: network coverage

Search Result 602, Processing Time 0.027 seconds

Dynamic Fractional Frequency Reuse based on an Improved Water-Filling for Network MIMO

  • M.K, Noor Shahida;Nordin, Rosdiadee;Ismail, Mahamod
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2124-2143
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A) systems, Inter-cell Interference (ICI) is a prominent limiting factor that affects the performance of the systems, especially at the cell edges. Based on the literature, Fractional Frequency Reuse (FFR) methods are known as efficient interference management techniques. In this report, the proposed Dynamic Fractional Frequency Reuse (DFFR) technique improved the capacity and cell edge coverage performance by 70% compared to the Fractional Frequency Reuse (FFR) technique. In this study, an improved power allocation method was adopted into the DFFR technique to reach the goal of not only reducing the ICI mitigation at the cell edges, but also improving the overall capacity of the LTE-A systems. Hence, an improved water-filling algorithm was proposed, and its performance was compared with that of other methods that were considered. Through the simulation results and comparisons with other frequency reuse techniques, it was shown that the proposed method significantly improved the performance of the cell edge throughput by 42%, the capacity by 75%, and the coverage by 80%. Based on the analysis and numerical expressions, it was concluded that the proposed DFFR method provides significant performance improvements, especially for cell edge users.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

Message Delivery and Energy Consumption Analysis on Pocket Switched Network Routing Protocols (Pocket Witched Network 라우팅 프로토콜의 메시지 전송 및 에너지 소비 분석)

  • Cabacas, Regin;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.571-576
    • /
    • 2013
  • Despite the development of the Internet, both in terms of technology and coverage, there are still remote areas and scenarios where connectivity is very difficult to achieve. Pocket Switched Network is a network paradigm that takes the advantage of human mobility to disseminate data. Factors such as mobility of nodes, link failures, discharged batteries, are among the challenges that may compromise connectivity in these networks. This paper presents a performance analysis of existing routing schemes for PSN in terms of delivery probability, overhead ratio, average latency and average residual energy when the number of nodes is increased. We seek to identify a scheme that maximizes data delivery while minimizing communication overhead and thus extending the network lifetime.

Modeling message dissemination over multi-channel social network (다중 채널 소셜 네트워크상의 메시지 전송 모델링)

  • Kim, Kyung Baek
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • In these days, along with the extreme popularity of online social network services, it becomes an important problem understanding the role of social network in the research of message dissemination. Past studies of message dissemination over online social network services mostly consider the coverage of message dissemination and the methods to maximize it. But, these works lack of the consideration of the impact of multi channel social network, which has multiple communication channel with distinct properties of message transfer and various users with distinct channel preferences. In this paper, the new message dissemination model over multi-modal multi-channel social network, the Delay Weighted Independent Cascade Model, is proposed. The proposed model considers various channels including online social network service, email, SMS messaging, phone and mouth-to-mouth and their distinct message transfer properties. In order to consider the various user properties, the different value of probability of forwarding a message and the different preference of communication channel is considered. Moreover, the proposed model considers the distribution of user location and allows to analyze the properties of message dissemination under various scenarios. Based on the proposed model, a message dissemination simulator is generated and the message disseminations on various scenarios are analyzed.

Clustering Scheme using Memory Restriction for Wireless Sensor Network (무선센서네트워크에서 메모리 속성을 이용한 클러스터링 기법)

  • Choi, Hae-Won;Yoo, Kee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.10-15
    • /
    • 2009
  • Recently, there are tendency that wireless sensor network is one of the important techniques for the future IT industry and thereby application areas in it are getting growing. Researches based on the hierarchical network topology are evaluated in good at energy efficiency in related protocols for wireless sensor network. LEACH is the best well known routing protocol for the hierarchical topology. However, there are problems in the range of message broadcasting, which should be expand into the overall network coverage, in LEACH related protocols. Thereby, this paper proposes a new clustering scheme to solve the co-shared problems in them. The basic idea of our scheme is using the inherent memory restrictions in sensor nodes. The results show that the proposed scheme could support the load balancing by distributing the clusters with a reasonable number of member nodes and thereby the network life time would be extended in about 1.8 times longer than LEACH.

Spatial Location Modeling for the Efficient Placements of the Super WiFi Facilities Utilizing White Spaces (화이트 스페이스를 활용한 슈퍼 와이파이 시설의 효율적 배치를 위한 공간 입지 모델링)

  • Lee, Gunhak;Kim, Kamyoung
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.259-271
    • /
    • 2013
  • This paper addresses the efficient facility placements to adopt a super WiFi network, taking significant considerations as the next generation 'information highway'. Since the super WiFi has a wider geographic coverage by utilizing the white spaces of TV broadcasting which are empty and available frequencies for the wireless communications, it would play an important role in releasing digital divide of the internet access for low populated or mountainous areas. The purpose of this paper is to explore systematic and efficient spatial plans for the super WiFi. For doing this, we applied optimal location covering models to Gurye-gun, Jeonlanamdo. From the application, we presented optimal locations for super WiFi facilities and significant analytical results, such as the tradeoff between the number of facilities and coverage and marginal coverage for establishing super WiFi network. The results of this research would be usefully utilized for decision makers who wish to adopt a super WiFi, to extend wireless networks in a city or build a regional infrastructure of wireless facilities.

  • PDF

Present and Future Technologies of Satellite Communication Network Security (위성 통신망 보안 기술 당면 과제 및 향후 발전 방향 분석)

  • Choi, Jihwan;Joo, Changhee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.50-53
    • /
    • 2017
  • Satellite communications are vulnerable to malicious eavesdroppers and interceptors due to wide coverage and broadcasting applications. However, technologies for securing satellite networks have yet to be more articulated beyond high-layer packet encryption. As attempts for jamming and spoofing attacks spread out, it is extremely critical to invest on the development of physical layer security solutions. In this paper, we review current technologies for satellite communication network security both in high and physical layers. We also present recent research results on physical layer security in the fields of information theory and wireless networks. We suggest a future direction for satellite communication security, including a cross-layer approach.

PMIPv6-based Mobility Management Scheme for Vehicular Communication Networks (차량통신망 지원을 위한 PMIPv6 기반 이동성 관리 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • This paper proposes mobility management schemes providing Internet session continuity to moving vehicles in the V2I (Vehicle-to-Infrastructure) environment of the vehicular communication networks. Since PMIPv6 is localized mobility management protocol, PMIPv6 can not be directly applied to the vehicular communication network requiring global mobility coverage. Therefore, in this paper, we derive two scenarios of applying PMIPv6 to vehicular communication network environment and propose PMIPv6-based global mobility management schemes for those scenarios. Through simulations, we show that the proposed schemes can significantly decrease the Internet service discontinuity.

Study on AMI System based on IEEE 802.11s Mesh Technology (IEEE 802.11s 무선메쉬 기반 AMI 시스템에 관한 연구)

  • Kim, Younghyun;Myoung, No-Gil;Kim, Myong-Soo;Lee, Sang-Youm
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.100-106
    • /
    • 2013
  • AMI enables bi-directional exchange of information between utilities and consumers in order to maximize energy efficiency. To enable the AMI, it is essentially required to construct stable communication networks. This paper shows the AMI system based on IEEE 802.11s as one of the communication methods. Experimental results show that the wireless mesh network technology achieves a stable communication performance over a wide coverage.

Energy-efficient Custom Topology Generation for Link-failure-aware Network-on-chip in Voltage-frequency Island Regime

  • Li, Chang-Lin;Yoo, Jae-Chern;Han, Tae Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.832-841
    • /
    • 2016
  • The voltage-frequency island (VFI) design paradigm has strong potential for achieving high energy efficiency in communication centric manycore system-on-chip (SoC) design called network-on-chip (NoC). However, because of the diminished scaling of wire-dimension and supply voltage as well as threshold voltage in modern CMOS technology, the vulnerability to link failure in VFI NoC is becoming a crucial challenge. In this paper, we propose an energy-optimized topology generation technique for VFI NoC to cope with permanent link failures. Based on the energy consumption model, we exploit the on-chip communication traffic patterns and characteristics of link failures in the early design stage to accommodate diverse applications and architectures. Experimental results using a number of multimedia application benchmarks show the effectiveness of the proposed three-step custom topology generation method in terms of energy consumption and latency without any degradation in the fault coverage metric.