• Title/Summary/Keyword: network congestion

Search Result 908, Processing Time 0.026 seconds

An efficient the traffic control algorithm in ATM Network (ATM 망에서 효율적인 트래픽제어 알고리즘)

  • 류언무
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.112-119
    • /
    • 2000
  • In this paper, it aims at two different situation such that a preventive control which means, it never has network information in case of occurring congestion in network, and a reactive control which means, after the congestion simply happens. it is not effective to recover with congestion just because of extensive delay for an electric wave. To solve the problems, threshold is set up with buffer in multiplex system, and executes a congestion control by FBLB which is FeedBack Leaky Bucket Algorithm. As suggested by FBLB Algorithm. the outcome of performance could be compared with Buffered Leaky Bucket Algorithm.

  • PDF

LSP Congestion Control methods in ATM based MPLS on BcN

  • Kim Chul soo;Park Na jung;Ahn Gwi im;Lee Jung tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.241-249
    • /
    • 2005
  • ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QOS commitment capabilities, Traffic engineering and smooth migration for BcN in Korea. At this time, due to the comprehensive nature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffic[1,2,3,4]. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To-Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we have introduced a HTR LSP detection method using network signaling information in an ATM layer. MPLS related studies can cover LSP failures in a physical layer fault, it can not impact network congestion status. Here we will present the research results for introducing HTR LSP detection methods and control mechanisms and this mechanism can be implementing as SOC for high speed processing a packet header. We concluded that it showed faster congestion avoidance abilities with a more reduced system load and maximized the efficiency of network resources by restricting ineffective machine attempts.

A Performance Study on Congestion Control Schemes for the Broadband Communication Networks (광대역통신망에서 폭주제어 방식에 대한 성능연구)

  • Doo-yeong Park
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, we carry out a performance study related to the Broadband Network. For this network, it has been proposed to use the leaky bucket as a way of controlling congestion within the network. On the top of leaky bucket type rate based congestion control scheme for high speed networks, a user will typically operate an error control scheme for retransmitting lost and erroneous packets. We propose a performance model in order to study the interaction between a user's error control scheme and the leaky bucket congestion control scheme for high speed networks. Simulation results show that parameters such as the window size and the token generation rate in the leaky bucket are key factors affecting the end-to-end delay.

  • PDF

TCP Congestion and Flow Control Algorithm using a Network Model (네트워크 모델을 이용한 전송제어 프로토콜(TCP))

  • 유영일;이채우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.4
    • /
    • pp.35-44
    • /
    • 2004
  • Recently announced TCP Vegas predicts the degree of congestion in the network and then control the congestion window size. Thus it shows better performance than TCP Reno. however, TCP vegas does not assume any network model, its congestion window control is very limited. Because or this limitation, TCP vegas still can not adapt to fast changing available bandwidth. In this paper, we introduce a new TCP algorithm which adapts to fast changing available bandwidth well. To devise such a TCP, we model the end to end network of TCP connection as a queueing system and finds congestion window size which can utilize the available bandwidth sufficiently but not make the network congested. The simulation results show that our algorithm adapts to the avaliable bandwidth faster than TCP vegas and as a results, when the available bandwidth is changing rapidly, our algorithm not only operates more stably than TCP Vegas, but also it shows higher thruput than TCP Vegas.

A Queue Management Algorithm for Improving Fairness in a Private Network (사설 망의 공정성을 향상시키기 위한 큐 관리 알고리즘)

  • Kang, Tae-Hyung;Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.524-532
    • /
    • 2002
  • With the recent rapid progress of Internet, the higher speed network is needed to support the exploration of ambient information from text-based to multimedia-based information. Also, demands for additional Layer 3 routing technique, such as Network Address Translator (NAT) and Firewall, are required to solve a limitation of a current Internet address space and to protect the interior network from the exterior network. However, current router-based algorithms do not provide mechanisms to solve the congestion and fairness problems, while supporting the multimedia services and satisfying the user requirements. In this paper, to solve these problems, a new active queue management, called MFRED (Multiple Fairness RED) algorithm, is proposed. This algorithm can efficiently reduce the congestion in a router or gateway based on the Layer 3 routing technique, such as NAT. This algorithm can improve the fairness among TCP-like flows and unresponsive flows. It also works well in fairly protecting congestion-sensitive flows, i.e. fragile TCP, from congestion-insensitive or congestion-causing flows, i.e. robust TCP.

CASPER: Congestion Aware Selection of Path with Efficient Routing in Multimedia Networks

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Diwakar, Khushboo
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.241-260
    • /
    • 2011
  • In earlier days, most of the data carried on communication networks was textual data requiring limited bandwidth. With the rise of multimedia and network technologies, the bandwidth requirements of data have increased considerably. If a network link at any time is not able to meet the minimum bandwidth requirement of data, data transmission at that path becomes difficult, which leads to network congestion. This causes delay in data transmission and might also lead to packet drops in the network. The retransmission of these lost packets would aggravate the situation and jam the network. In this paper, we aim at providing a solution to the problem of network congestion in mobile ad hoc networks [1, 2] by designing a protocol that performs routing intelligently and minimizes the delay in data transmission. Our Objective is to move the traffic away from the shortest path obtained by a suitable shortest path calculation algorithm to a less congested path so as to minimize the number of packet drops during data transmission and to avoid unnecessary delay. For this we have proposed a protocol named as Congestion Aware Selection Of Path With Efficient Routing (CASPER). Here, a router runs the shortest path algorithm after pruning those links that violate a given set of constraints. The proposed protocol has been compared with two link state protocols namely, OSPF [3, 4] and OLSR [5, 6, 7, 8].The results achieved show that our protocol performs better in terms of network throughput and transmission delay in case of bulky data transmission.

A Study on the Traffic Controller of ATM Call Level Based on On-line Learning (On-line 학습을 통한 ATM 호레벨 트래픽 제어 연구)

  • 서현승;백종일;김영철
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.115-118
    • /
    • 2000
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. To effectively control traffic in UNI(User Network Interface) stage, we proposed algorithm of integrated model using on-line teaming neural network for CAC(Call Admission Control) and UPC(Usage Parameter Control). Simulation results will show that the proposed adaptive algorithm uses of network resources efficiently and satisfies QoS for the various kinds of traffics.

  • PDF

Congestion Control Mechanism for Efficient Network Environment in WMSN (무선 멀티미디어 센서 네트워크에서 효율적인 네트워크 환경을 위한 혼잡 제어 메커니즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • Wireless multimedia sensor network senses and transfers mass multimedia data. Also, it is sensitive to latency. This thesis proposes a routing technique based on traffic priority in order to improve the network efficiency by minimizing latency. In addition, it proposes a congestion control mechanism that uses packet service time, packet inter-arrival time, buffer usage, etc. In this thesis, we verified the reduction of packet latency in accordance with the quality level of packet as a result of the performance analysis through the simulation method. Also, we verified that the proposed mechanism maintained a reliable network state by preventing packet loss due to network overload.

Gateway Channel Hopping to Improve Transmission Efficiency in Long-range IoT Networks

  • Kim, Dae-Young;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1599-1610
    • /
    • 2019
  • Intelligent services have expanded as Internet of Things (IoT) technology has evolved and new requirements emerge to accommodate various services. One new requirement is transmitting data over long distances with low-power. Researchers have developed low power wide area (LPWA) network technology to satisfy the requirement; this can improve IoT network infrastructure and increase the range of services. However, network coverage expansion causes several problems. The traffic load is concentrated at a specific gateway, which causes network congestion and leads to decreased transmission efficiency. Therefore, the approach proposed in this paper attempts to recognize and then avoid congestion through gateway channel hopping. The LPWA network employs multiple channels, so wireless channel hopping is available in a gateway. Devices that are not delay sensitive wait for the gateway to reappear on their wireless channel; delay sensitive devices change the wireless channel along the hopping gateway. Thus, the traffic load and congestion in each wireless channel can be reduced improving transmission efficiency. The proposed approach's performance is evaluated by computer simulation and verified in terms of transmission efficiency.

Decision of Maximum Congestion Window Size for TCP Performance Improvement by Bandwidth and RTT Measurement in Wireless Multi-Hop Networks

  • Huh, In;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • In the wireless network, TCP performs poorly because it was originally designed for wired networks and does not take into consideration wireless characteristics such as mobility, high-loss probability, and hidden-terminal problems. In particular, in the wireless multi-hop networks, a large congestion window increases the probability of contention and packet losses, and TCP performance is degraded severely as a result. So, it is necessary to limit the TCP congestion window size in order keep the probability of contention loss in the system to a minimum. In this paper, we propose a new scheme for determining the maximum congestion window size based on the measured bandwidth and Round-Trip-Time (RTT). Using ns-2 simulation, we show that the proposed scheme reduces the probability of packet contention and improves TCP performance.