TCP Congestion and Flow Control Algorithm using a Network Model

네트워크 모델을 이용한 전송제어 프로토콜(TCP)

  • Published : 2004.04.01

Abstract

Recently announced TCP Vegas predicts the degree of congestion in the network and then control the congestion window size. Thus it shows better performance than TCP Reno. however, TCP vegas does not assume any network model, its congestion window control is very limited. Because or this limitation, TCP vegas still can not adapt to fast changing available bandwidth. In this paper, we introduce a new TCP algorithm which adapts to fast changing available bandwidth well. To devise such a TCP, we model the end to end network of TCP connection as a queueing system and finds congestion window size which can utilize the available bandwidth sufficiently but not make the network congested. The simulation results show that our algorithm adapts to the avaliable bandwidth faster than TCP vegas and as a results, when the available bandwidth is changing rapidly, our algorithm not only operates more stably than TCP Vegas, but also it shows higher thruput than TCP Vegas.

최근에 제안된 TCP Vegas는 네트워크의 상황을 예측하고, 상황에 맞는 전송율의 변화를 통해 흐름제어와 혼잡제어를 함으로써 기존의 TCP Reno에 비해 많은 성능향상을 이루었다. 그러나 TCP Vegas는 네트워크에 대한 모델이 없기 때문에 네트워크의 가용대역폭을 충분히 활용할 정확한 전송율을 계산하지 못하고, 제한된 윈도우의 변화만을 적용시킴으로 인해, 급변하는 가용 대역폭의 변화에 적응을 하지 못하고 손실이 발생할 가능성이 여전히 존재한다. 본 논문에서는 이러한 단점을 극복하고자 TCP의 단대단 연결을 큐잉 시스템으로 모델링하여 적절한 전송율을 결정함으로써, 안정되고 빠르게 가용 대역폭에 수렴하는 알고리듬을 제안한다. 시뮬레이션을 통한 TCP Vegas와의 성능 비교 결과는 제안된 알고리듬이 가용 대역폭이 급변하는 네트워크 환경에서 TCP Vegas 보다 안정적이고 빠르게 반응하기 때문에 외부 트래픽의 변화에 더 잘 적응하고 처리율을 향상시키는 결과를 보여준다.

Keywords

References

  1. J. Postel, 'Transport control protocol,' Request for Comments 793, DDN Network Information Center, SRI International, September 1981
  2. V. Jacobson, 'Congestion avoidance and control,' in Proceedings of ACM SIGCOMM, pp.134-143, August 1988
  3. W. Stevens, 'TCP/IP Illustrated, Volume 1,' Addison-Wesley Publishing Company, pp.223-242, 1994
  4. W. Xu and A.G. Qureshi, 'Novel TCP congestion control scheme and its performance evaluation,' IEE Proceedings Communications, vol.149, no.4, pp.217-222, August 2002 https://doi.org/10.1049/ip-com:20020508
  5. L. Brakmo, and L. Peterson, 'TCP Vegas: End to end congestion avoidance on a global Internet,' IEEE J. Sel. Area Communications, vol.13, no.8, pp.1465-1480, October 1995 https://doi.org/10.1109/49.464716
  6. J. Mo, 'Analysis and Comparison of TCP Reno and Vegas,'INFOCOM, pp.1556-1563, March 1999 https://doi.org/10.1109/INFCOM.1999.752178
  7. J. Aweya and M. Ouellette, 'Enhancing network performance with TCP rate control,'GLOBECOM, pp.1712-1718, December 2000 https://doi.org/10.1109/GLOCOM.2000.891929
  8. S. Floyd, 'An Extension to the Selective Acknowledgement(SACK) Option for TCP,' RFC 2883, July 2000
  9. K. Ramakrishnan and S. Floyd, 'A Proposal to add Explicit Congestion Notification(ECN) to IP,' RFC 2481, January 1999
  10. F. Kevin and S. Floyd, 'Simulation-based Comparisons of Tahoe, Reno, and SACK TCP,' Computer Communication Review, October 1996 https://doi.org/10.1145/235160.235162
  11. B. Hajek, 'A queue with periodic arrivals and constant service rate,' in Probability, Statistics and Optimization a Tribute to Peter Whittle (F.P. Kelly ed., John Wiley and Sons), pp.166-175, 1994
  12. R. Jain, 'A Delayed-Based Congestion Control Scheme for Window Flow-Networks,' DEC TR 566, April 1989
  13. S. Low, L. Peterson, 'Understanding TCP Vegas: Theory and Practice,' preprint, http://www.-ee.mu.oz.au/staf/slow/research, February 2000
  14. W. Stallings, 'High-Speed Networks (TCP/IP and ATM design principles),' Computer and Data CommunicationsTechnology, pp.149-172, January 1998
  15. 김종권, 'TCP Vegas RTT Ambiguity 문제와 그 해결 TCP Vegas RTT Ambiguity Problem and Its Solutions,' 한국통신학회지, vol.25, no.7, pp.1260-1269, 2001년 9월
  16. L. Kleinrock, 'Queueing Systems,' John Wiley & Sons, pp.312-325, 1975
  17. http://www.isi.edu/nsnam/ns