• Title/Summary/Keyword: network congestion

Search Result 907, Processing Time 0.029 seconds

Layer Selection Algorithms of H.264/SVC Streams for Network Congestion Control (네트워크 혼잡 제어를 위한 H.264/SVC 스트림의 계층 선택 알고리즘)

  • Kim, Nam-Yun;Hwang, Ki-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • H.264/SVC provides scalable video streams which consist of a base layer and one or more enhancement layers. Thus, it can efficiently adapt encoded streams to individual network conditions by dropping some layers of bit streams. However, on a dynamic environment such as the Internet, random packet losses due to network congestion can cause drastic effect on SVC quality. To avoid network congestion, the rate of video streams should be adjusted by carefully selecting a layer of each stream. In this paper, we propose three layer selection algorithms which can avoid network congestion by using the rate-distortion characteristics of streams. Simulation results show that FS(Far-Sighted) algorithm can maximize the overall PSNR value of streams by efficiently using the characteristics of video streams.

Congestion Aware Fast Link Failure Recovery of SDN Network Based on Source Routing

  • Huang, Liaoruo;Shen, Qingguo;Shao, Wenjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5200-5222
    • /
    • 2017
  • The separation of control plane and data plane in Software Defined Network (SDN) makes it flexible to control the network behavior, while also causes some inconveniences to the link failure recovery due to the delay between fail point and the controller. To avoid delay and packet loss, pre-defined backup paths are used to reroute the disrupted flows when failure occurs. However, it may introduce large overhead to build and maintain these backup paths and is hard to dynamically construct backup paths according to the network status so as to avoid congestion during rerouting process. In order to realize congestion aware fast link failure recovery, this paper proposes a novel method which installs multi backup paths for every link via source routing and per-hop-tags and spread flows into different paths at fail point to avoid congestion. We carry out experiments and simulations to evaluate the performance of the method and the results demonstrate that our method can achieve congestion aware fast link failure recovery in SDN with a very low overhead.

An Dynamic Congestion Window Tuning Algorithm for TCP Performance Improvement in Wireless Ad-hoc Network (무선 Ad-hoc 네트워크에서 TCP 성능 향상을 위한 동적 혼잡윈도우 조정 알고리즘)

  • Kim, Kwan-Woong;Bae, Sung-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1384-1390
    • /
    • 2008
  • The TCP protocol is originally designed for wired network, however it performs very poor in wireless network due to different nature of wireless network from wired networks. In terms of TCP performance improvement in wireless Ad-hoc network, many researches show that small congestion window size of TCP connection can improve TCP performance. We propose a new TCP algorithm to improve TCP performance in wireless Ad-hoc network. The basic idea of our approach is that TCP receiver estimates the optimum window size and then sets congestion window limit of TCP sender to an optimum value by using the advertised window field in TCP ACK packet. From extensive computer simulation, the proposed algorithm shows superior performance than traditional TCP protocols in terms of packet delivery ratio and packet loss.

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

Multipath-Based Congestion Control Scheme in Wireless Sensor Networks (무선 센서 네트워크에서의 멀티패스 기반 혼잡 제어 기법)

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.452-456
    • /
    • 2010
  • In wireless sensor networks, due to the many-to-one convergence of upstream traffic, congestion more probably appears. Network congestion can be alleviated by controlling incoming traffic, but using traffic control can violate fidelity level required by applications. In this paper, we propose multipath-based congestion control scheme alleviating congestion by resource control for wireless sensor networks. When congestion occurs, the multipath-based congestion control scheme distributes network traffic through multiple alternate paths, and consequently, the scheme enables to detour in the congested spot and increase resource utilization. Our results show that our multipath-based congestion control scheme can satisfy fidelity level required by applications and alleviate congestion effectively.

Minority First Gateway for Protecting QoS of Legitimate Traffic from Intentional Network Congestion (인위적인 네트워크 혼잡으로부터 정상 트래픽의 서비스 품질을 보호하기 위한 소수자 우선 게이트웨이)

  • Ann Gae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7B
    • /
    • pp.489-498
    • /
    • 2005
  • A Denial of Sewice (DoS) attack attempts to prevent legitimate users of a sewice from being adequately served by monopolizing networks resources and, eventually, resulting in network or system congestion. This paper proposes a Minority First (MF) gateway, which is capable of guaranteeing the Quality of Service (QoS) of legitimate service traffic under DoS situations. A MF gateway can rapidly determine whether an aggregated flow is a congestion-inducer and can protect the QoS of legitimate traffic by providing high priority service to the legitimate as aggregate flows, and localize network congestion only upon attack traffic by providing low priority to aggregate flows regarded as congestion-inducer. We verify through simulation that the suggested mechanism possesses excellence in that it guarantees the QoS of legitimate traffic not only under a regular DoS occurrence, but also under a Distributed DoS (DDoS) attack which brings about multiple concurrent occurrences of network congestion.

Congestion Control for Burst Loss Reduction in Labeled OBS Network (Labeled OBS 망에서의 버스트 손실 감소를 위한 혼잡 제어)

  • Park Jonghun;Yoo Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.331-337
    • /
    • 2005
  • The optical Internet is considered as a feasible solution for transporting huge amount of traffic volume in the future Internet. Among optical switching technology for the optical Internet, OBS becomes one of the most promoting solution. Recently, a lebeled OBS(LOBS) architecture is considered for an efficient control on OBS network. Given that a data burst may contain few thousands of IP packets, a single loss of data burst results in a serious throughput degradation in LOBS network. In this paper, we improve the performance of LOBS network by introducing the burst congestion control mechanism. More specifically, the OBS router at the network core detects the network congestion by measuring the loss probability of burst control packet. The OBS router at the network edge reduces the burst generation according to the network condition repored by the OBS router at the network core. Through the simulations, it is shown that the proposed congestion control mechanism can reduce the burst loss probability and improve the LOBS network throughput.

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

  • Deshmukh, Sneha;Raisinghani, Vijay T.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.191-200
    • /
    • 2022
  • Constrained Application Protocol (CoAP) is a standardized protocol by the Internet Engineering Task Force (IETF) for the Internet of things (IoT). IoT devices have limited computation power, memory, and connectivity capabilities. One of the significant problems in IoT networks is congestion control. The CoAP standard has an exponential backoff congestion control mechanism, which may not be adequate for all IoT applications. Each IoT application would have different characteristics, requiring a novel algorithm to handle congestion in the IoT network. Unnecessary retransmissions, and packet collisions, caused due to lossy links and higher packet error rates, lead to congestion in the IoT network. This paper presents an adaptive congestion control protocol for CoAP, Adaptive Congestion Control with a Backoff algorithm (ACCB). AACB is an extension to our earlier protocol AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and RTO using dynamic factors instead of fixed values. Also, the backoff mechanism has dynamic factors to estimate the RTO value on retransmissions. This dynamic adaptation helps to improve CoAP performance and reduce retransmissions. The results show ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate (37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and AdCoCoA respectively in linear scenario. The results show ACCB has significantly higher goodput (60.5%, 482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA respectively in random walk scenario. ACCB has similar retransmission index compare to CoAp, CoCoA+ and AdCoCoA respectively in both the scenarios.

A Hierarchical Multicast for Dynamic Adaptation to Network Congestion Status (네트워크 혼잡상태에 동적 적응을 위한 계층적 멀티캐스트)

  • Kim, Chang-Geun;Song, Jin-Kook;Gu, Myeong-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1427-1433
    • /
    • 2008
  • There is SARLM scheme for dynamic adaptation to network congestion status which arises from multicast applications. However, in this scheme, when congestion occurs in a local, the waste of available bandwidth occurs in non-congestion local because of reducing of transmission rate in congestion local. In this paper, we propose a hierarchical multicast for dynamic adaptation to network congestion. In proposed scheme, we select a representative in each local. while congestion status. It receives packet from multicast sender and hierarchically transmits packet to the representative in congestion status by unicast for preventing decrease of transmission rate and the representative in congestion local transmits packet to the receivers in local by multicast. In experimental results, it was known that the proposed scheme could improve transmission rate of receivers in congestion status and more efficiently used available bandwidth.

Effective Estimation Method of Routing Congestion at Floorplan Stage for 3D ICs

  • Ahn, Byung-Gyu;Kim, Jae-Hwan;Li, Wenrui;Chong, Jong-Wha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.344-350
    • /
    • 2011
  • Higher integrated density in 3D ICs also brings the difficulties of routing, which can cause the routing failure or re-design from beginning. Hence, precise congestion estimation at the early physical design stage such as floorplan is beneficial to reduce the total design time cost. In this paper, an effective estimation method of routing congestion is proposed for 3D ICs at floorplan stage. This method uses synthesized virtual signal nets, power/ground network and clock network to achieve the estimation. During the synthesis, the TSV location is also under consideration. The experiments indicate that our proposed method had small difference with the estimation result got at the post-placement stage. Furthermore, the comparison of congestion maps obtained with our method and global router demonstrates that our estimation method is able to predict the congestion hot spots accurately.