Some statistics are presented for construction of confidence intervals of variance components for the unbalanced twofold nested classification model and they are shown to be approximated by chi-square distributions.
분산성분모형은 다양한 임의 요인들이 반응변수에 미치는 영향을 선형식의 형태로 나타내는 매우 유용하고 널리 사용되는 통계적 모형이다. 분산성분모형은 요인의 배치나 관측 자료의 구조에 따라 크게 교차배치와 지분배치로 나누어진다. 본 논문은 분산성분모형에서 요인의 배치구조와 분산성분의 크기에 따라 모형선택법의 경험적인 성질이 다르게 나타나는 현상을 체계적인 모의실험을 통하여 제시하고자 한다. 이원배치 분산성분모형에서 정보기준에 근거한 모형선택법, 즉 BIC 또는 AIC를 사용하는 경우 요인의 배치구조와 분산성분의 크기에 따라 모형선택법의 경험적인 성질이 다르게 나타나는 현상을 소규모 모의실험을 통하여 보여준다. 모의실험 결과에서 모형선택법의 경험적 성질이 요인의 배치 설계에 따라 다르게 나타난다는 사실을 확인하였으며 특히 요인의 배치구조가 지분 설계구조일때 내포된 요인의 분산성분의 상대적인 크기가 커짐에 따라 자료를 생성하는 모형보다 작은 모형을 선택하는 경향이 있다는 것이 모의실험으로 확인되었다.
중첩형 일반화 사례 (NGE, Nested Generalized Exemplar) 기법은 거리 기반 분류를 최적 일치 규칙으로 사용하며, 노이즈에 대한 내구력을 증가시켜 주는 동시에 모델 크기를 감소시키는 장점이 있다. NGE 학습 중 생성된 교차(cross)나 중첩(overlap) 현상은 분류성능을 저해하는 요인으로 작용한다. 따라서 본 논문은 NGE 학습 중 생성된 교차나 중첩 현상이 발생한 초월 평면에대해 상호정보가 가장 큰 구간을 분리하여, 새로운 초월평면을 구성하게 하여, 분류성능 향상시키고 초월평면의 개수를 감소시키는 기법인 DHGen(Dominant Hyperrectangle Generation) 알고리즘을 제안하였다. 제안한 DHGen은 분류성능면에서 kNN과 유사하고 NGE이론으로 구현한 EACH보다 우수함을 UCI Machine Learning Repository에서 벤치마크데이터를 발췌한 실험자료로 입증하였다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1439-1448
/
2013
확률화 블록계획법이나 교차된 이원분류표에 대한 분산분석과 오차제곱합의 성질은 널리 알려져있다. 본 논문에서는 인자에 따른 수준에 또 다른 인자들이 내포되어 있는 지분계획 특히 이단계 지분계획에 대하여 구조적 특징을 설명하고 오차제곱합의 성질에 대하여 살펴보았다. 또한 이단계 지분계획의 활용으로 크로스오버 계획을 소개하고 생물학이나 약학 등의 분야에서 많이 사용되는 동등성 검정의 신뢰구간 구축에 대하여 설명하였고 실제자료와 SPSS 통계 페키지를 이용하여 분석함으로서 응용성을 부각시켰다.
Kurkjian 과 Zelen(1963)에 의해 조화행렬에서 행결합 행렬의 특성에 관계된 성질(Property) A가 제안되었다. 한편으로 Paik(1985)은 조화행렬이 블럭행렬로 분할되고, 분할된 블럭행렬간, 블럭행렬내에서 각각 순환하는 다중순환형식행렬을 갖는 경우를 정의하고, Paik(1985)은 이러한 특성을 갖는 계획을 성질 C라 하였다. 본 논문에서는 다중순환형식행렬을 갖는 조화행렬의 구조에 의하여 불완비블럭계획을 분류하였으며 분류의 목적은 축소된정규방정식의 해와 배치계획을 쉽게 하는데 있다.
In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.
본 연구는 원격 탐사의 영상 처리에서 영상 분할의 상위 수준으로 웅집 계층 clustering의 dendrogram을 통한 무감독 영상 분류를 제안한다. 제안된 알고리즘은 분광 영역에서 정의된 RAG(Regional Agency Graph)와 min-heap 자료 구조를 이용하여 MCSNP(Mutual Closest Spectral Neighbor Pair)의 집 합을 검색하면서 합병을 수행하는 계층 clustering 방법이다. 계산 시간과 저장 기억의 사용에 대한 효율을 증가시키기 위해 분광적 인접성올 정의 하는 분광 공간(spectral space)내의 다중창을 사용하였고 RNV(Region Neighbor Vector)을 이용하여 합병에 의하여 변하는 RAG 갱신하였고 적정한 단계 수가 주어 진다면 제안된 알고리즘은 집단 합병의 계층적 관계를 쉽게 해석 할 수 있는 dendrogram을 생성한다. 본 연구는 생성된 dendrogram을 이용한 nested-hierarchical 분석을 통하여 피복 형태의 계층적 관계를 해석한다. 이러한 해석은 피복 형태의 정확한 분류를 위한 의사 결정에 중요한 정보를 공급한다.
현재 IETF MANEMO (Mobile Adhoc for NEMO) 워킹 그룹에서는 중첩 NEMO의 내부 라우팅 지원 방안에 관한 표준을 준비중이다. 그러나 중첩 NEMO에서는 MIPv6나 기본 NEMO 프로토콜에서 발생하지 않는 중첩 토폴로지 특성을 갖는다. 따라서 기존 이동성 지원 프로토콜에서는 발생하지 않는 예외적인 이동 특성이 발생한다. 이러한 이동 특성은 네트워크 재설정에 대한 각기 다른 타입을 유발한다. 본 논문은 중첩 NEMO에서 발생 가능한 새로운 이동 패턴을 분류하고 분석하였다. 결론적으로 본 논문에서는 토폴로지 특성과 주소 설정 방안에서 발생하는 새로운 이동 타입과 재설정 패턴을 정의하고 분석적인 접근을 통해서 문제점을 도출하고 요구사항을 제시하고 있다.
소멸위기수종인 분비나무와 구상나무 8개 천연집단의 지리적 위치에 따른 구과, 종자 및 포침의 형태적 특성에 대한 변이의 구명과 단계적 판별분석을 이용하여 이들 변수 중 수종간 식별에 도움을 주는 분류 지표를 선정하고자 하였다. Nested 분산분석 결과 구과, 종자 및 포침 특성 13가지 형질 모두에서 집단간 및 집단 내 개체 간에 유의적인 차이를 보였다. 분비나무는 종자길이, 종자지수, 포침폭 및 포침지수 특성에서, 구상나무는 포침폭과 포침지수 특성에서 총 분산 가운데 집단간 차지하는 비율이 집단내의 개체가 차지하는 비율보다 높게 나타났다. 분비나무와 구상나무의 식별을 위한 판별분석 결과 변별력을 갖는 주요 형질들은 구과폭, 종자날개의 폭 및 포침길이 특성으로 나타났으며, 최종적으로 변수증감법(stepdisc method)에 의한 단계적 판별분석에서 종자날개의 폭과 포침길이 인자의 최적결합으로 판별되었다.
최근 많은 게임이 사용자의 게임 플레이와 관련된 데이터를 제공하고 있고, 이에 기계학습 기법을 결합하여 상대의 행동을 예측하는 연구들이 있다. 본 연구는 실시간 전략 게임(클래시로얄)의 경기 데이터와 기계학습 기반의 다중 레이블 분류를 사용하여 상대 플레이어의 행동을 예측한다. 초기 실험은 이진 형태의 카드 특성과 카드 배치 좌표 그리고 정규화된 시간 정보를 입력받아 카드 타입, 카드 배치 좌표를 랜덤포레스트와 다층 퍼셉트론을 이용하여 예측한다. 이후, 순차적으로 3 가지 전처리 방식을 사용하여 실험을 진행했다. 먼저 입력 데이터의 특성 정보 일부를 변환시켜 예측했다. 다음으로 입력 데이터를 연속된 카드 입력 방식까지 고려한 중첩 형태로 변환 시켜 예측했다. 마지막으로 모든 이전 단계의 데이터들을 정규화된 시간 기준에 따라 초반, 후반으로 분할하여 예측했다. 그 결과 가장 개선을 보인 전처리 방식은 중첩 형태의 데이터를 초반으로 분할하였을 경우로 카드 타입이 약 2.6%, 카드 배치 좌표가 약 1.8% 개선을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.