• Title/Summary/Keyword: neonatal rats

Search Result 108, Processing Time 0.023 seconds

The effect of erythropoietin in neonatal rat model of hypoxic-ischemic brain injury (Erythropoietin의 투여가 신생백서 저산소허혈뇌손상에 미치는 영향)

  • Kim, Heng-Mi;Choe, Byung-Ho;Kwon, Soon-Hak;Sohn, Yoon-Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. Erythropoietin (Epo) has been shown to exert neuroprotective effects in various brain injury models although the exact mechanisms through which Epo functions are not completely understood. This study investigates the effect of Epo on hypoxic-ischemic (HI) brain injury and the possibility that its neuroprotective actions may be associated with iron-mediated metabolism. Methods : HI brain injury was produced in 7-day-old rats by unilateral carotid artery ligation followed by hypoxia with 8% oxygen for 2 h. At the end of HI brain injury, the rats received an intraperitoneal injection of 5,000 units/kg erythropoietin. Random premedication with iron, deferoxamine, iron-deferoxamine, or saline were performed 23 d before HI brain injury. The severity of the brain injury was assessed at 7 d after HI. Results : Single Epo treatment post-HI brain injury reduced the gross and histopathological findings of brain injury. Iron premedication did not increase the incidence or severity of the injury as measured by the damage score. Deferoxamine administration before HI brain injury improved the brain injury as compared to no treatment or Epo treatment. Conclusion : These findings indicate that Epo provides neuroprotective benefits after HI in the developing brain. These findings suggest that Epos neuroprotective actions may involve reducing iron in tissues that mediate the formation of free radicals.

The neuroprotective effect of recombinant human erythropoietin via an antiapoptotic mechanism on hypoxic-ischemic brain injury in neonatal rats

  • Kim, Moon-Sun;Seo, Yoo-Kyung;Park, Hye-Jin;Lee, Kye-Hyang;Lee, Kyung-Hoon;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.10
    • /
    • pp.898-908
    • /
    • 2010
  • Purpose: The neuroprotective effects of erythropoietin (EPO) have been recently shown in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity; however, limited data are available for such effects during the neonatal periods. Therefore, we investigated whether recombinant human EPO (rHuEPO) can protect against perinatal HI brain injury via an antiapoptotic mechanism. Methods: The left carotid artery was ligated in 7-day-old Sprague-Dawley (SD) rat pups ($in$ $vivo$ model). The animals were divided into 6 groups: normoxia control (NC), normoxia sham-operated (NS), hypoxia only (H), hypoxia+vehicle (HV), hypoxia+rHuEPO before a hypoxic insult (HE-B), and hypoxia+rHuEPO after a hypoxic insult (HE-A). Embryonic cortical neuronal cell culture of SD rats at 18 days gestation ($in$ $vitro$ model) was performed. The cultured cells were divided into 5 groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated groups. Results: In the $in$ $vivo$ model, Bcl-2 expressions in the H and HV groups were lower than those in the NC and NS groups, whereas those in the HE-A and HE-B groups were greater than those of the H and HV groups. The expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were in contrast to those of Bcl-2. In the $in$ $vitro$ model, the patterns of Bcl-2, Bax, and caspase-3 expression and Bax/Bcl-2 ratio were similar to the results obtained in the in vivo model. Conclusion: rHuEPO exerts neuroprotective effect against perinatal HI brain injury via an antiapoptotic mechanism.

Effects of Neonatal Exposure of Di (n-butyl) Phthalate and Flutamide on Male Reproduction in Rats

  • Kim, Tae-Sung;Kim, Hyung-Sik;Shin, Jae-Ho;Lee, Su-Jung;Moon, Hyun-Ju;Kang, Il-Hyun;Kim, In-Young;Seok, Ji-Hyun;Oh, Ji-Young;Han, Soon-Young
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.109-109
    • /
    • 2002
  • In recent reports, the multiple reproductive defects such as cryptorchidism, hypospadias, epididymal cysts, low sperm counts, and testicular cancers are increased in humans, and these changes were doubted by the chemicals with estrogenic or antiandrogenic activities in our environment. To compare the effects of neonatal exposure of di (n-butyl) phthalate and flutamide on the development of reproductive organs and to identify the specific mechanisms of these abnormalities related to the male reproducton, Sprague-Dawley neonate male rats were injected subcutaneously during 5-14 days after birth with corn oil (control), flutamide (0.05, 0.1, and 0.5 mg/animal) and DBP (5, 10, and 20 mg/animal). Animals were killed at 31 (immature) and 42 (pubertal) days of age respectively and blood was collected from abdominal aorta for serum testosterone analysis. Testes, epididymides, seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscle (LABC), cowpers glands and glans penis were weighed. Expression of steroid hormone receptors (AR and ER) was examined in the testes and ventral prostate. At 31 days of age, ventral prostate, seminal vesicles, LABC, and cowpers glands significantly decreased in the flutamide (0.5 mg/animal) and DBP (20 mg/animal), but serum testosterone levels were not changed. Flutamide slightly delayed the testes descent at the high dose (0.5 mg/animal), but DBP did not show any significant effect on the testes descent at all doses. DBP and flutamide decreased the expression of AR protein in the testes but did not affect the expression of ERa and ER protein in the testes. At 42 days of age, ventral prostate, seminal vesicles, and cowpers glands weights were still significantly decreased at the high dose of flutamide (0.5 mg/animal) and DBP (20 mg/animal), but the weights of testes and epididymides were not different. Serum testosterone decreased significantly in DBP treated animals and slightly, not significantly, in flutamide group. While DBP still significantly decreased the expression of AR protein in testis, flutamide recovered from downregulation of AR protein and did not affect the expression of ERa and ER protein in the testes. Based on these results, flutamide and DBP have shown several similar patterns in reproductive abnormalitis, but some marked differences which may be caused by different acting mechanism.

  • PDF

Effect of Lead Exposure During Lactational Period on Anxiety in Rat Using Elevated Plus Maze Test (수유기동안 납 투여가 성숙 쥐의 불안감 관련 행동양상에 미치는 영향)

  • Lim Sun-Young
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.979-986
    • /
    • 2005
  • Lead (Pb) exposure during development can produce neurological deficits. In this study, the effect of Pb exposure during neonatal development via lactation on anxiety of brain function was investigated. Long-Evans strain rats were raised through two generations. At the birth of the second generation, the dams were subdivided into two groups and supplied drinking water containing either $0.2\%$ Pb (Pb-treated group) or sodium (Na, Control group) acetate until weaning. Rats were sacrificed at 3 (weaning) and 11 weeks (maturity) for brain Pb and fatty acid analysis. Motor activity and elevated plus maze tests were initiated at 9 weeks. The brains in the Pb-treated group at weaning and maturity contained 1486$\pm$98 and $270{\pm}46$ ng Pb/g, respectively The control group showed the background level of Pb ($3.7{\pm}1.0_{ng}$ Pb/g) in both ages. The alterations in brain fatty acid composition induced by Pb exposure were more evident in 3 wks old than 11 wks old. For example, in 3 wks old, the percentages of $18:2_{n-6}$, $20:2_{n-6}$ and $18:2_{n-6}$ were decreased in the Pb-treated group with an increase in $20:4_{n-6}$ In motor activity test, there was a tendency of hyperactivity in the Pb-treated group compared with the control group but the difference was not significant. In elevated plus maze test, the Pb-treated group showed fewer numbers of visits to the open arms (P < 0.05), indicating that Pb exposure may lead to anxiogenic effect.

Electron Microscopic Study on the Differentiation of the Epidermis of the Albino Rats (백서 표피 분화에 관한 전자현미경적 연구)

  • Chung, Byung-Hoon;Lee, Beob-Yi;Chung, Ho-Sam;Lee, Kyu-Sik
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.96-116
    • /
    • 1991
  • The authors studied the morphological distinctions of each of the epidermal layers and the time of appearance of the keratohyalin granules and tonofilaments by the processing of development. The skins were obtained from fetal rats at the age of 14th, 16th, 17th, 18th, 19th and 20th day of gestation, of 1st and 3rd day of neonatal life and of 4th week after birth. The specimens were staind with uranyl acetate and lead citrate. The results obtained were as follows. 1. On the 16th-gestation day, the intermediate layer which contained numerous ${\alpha}-and\;{\beta}$-glycogen particles was appeared, and hemidesmosomes and desmosome were observed as well. 2. Tonofilaments were first observed on the 17th gestation day. 3. Above-mentioned intermediate layer was differentiated into the granular layer and the spinous layer on the 18th-gestation day. Keratohyaline granules were appeared in association with the ribosomes and the tonofilaments and the compound granules were lipoid granules which were surrounded by ribosomes at the periphery. 4. Ultimately, keratinization began to take place from the 20th-gestation day. At the age of 4th week, the thickeness of epidermis and the amount of keratohyaline granule and tonofibrils were decreased. It is consequently suggested that in the differentiation process of the rat epidermis, keratinization begins after formation of hemidesmosomes and desmosomes, from which the tonofilaments are formed and after keratohyaline granules are formed. Therefore appearance of the keratohyaline granules and formation of the tonofilament appears to have a close relations with the keratinization process of the rat epidermis.

  • PDF

Radioautographical observations of development and appearance of glia cells in brain I. Apperarace of ectodermal glial cell aggregates in rodent brain (뇌신경교세포(腦神經膠細胞) 집단(集團)의 발생(發生)과 이동(移動)에 대한 방사선(放射線) 자기법적(自記法的) 관찰 I, 설치류 뇌(腦)에 외배엽성(外胚葉性) 신경교세포(神經膠細胞) 집단(集團)의 출현(出現)에 대하여)

  • Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.481-487
    • /
    • 1992
  • The present study was designed to investigate the appearance of the congenital aggregates of the ectodermal glial cells in the brain of the normal rodents. The brain samples were taken from mice fetus, juvenile mice, rats and rabbits. The appearance regions of the glial cell aggregates (GCA) were investigated and the cells in the GCA were identified with electron microscope. 1. GCA in the mouse fetus tended to be higher in cell density, larger in size and lower frequency in appearance than juvenile mouse. The regions of higher appearance frequency of GCA in the juveniles of mice, rats and rabbits were ordered as subependymal layer in the collateral trigone of lateral ventricles, molecular layer of the neocortex, inner layer except the molecular layer in the neocortex, cerebral medulla, corpus callosum and hippocampus. Appearance frequency of GCA in the neonatal mice tended to be higher until 5 day after birth, and were markedly decreased on 10 and 15 day after birth. 2. GCA tended to be closed on one side of the blood vessels or neurons but not perivascular or perineuronal appearance. 3. In electron microscophy, GCA were composed of immature oligodendrocytes and astrocytes in the subependymal, and tended to be more mature and loose in the neocortex and to be appended some microglia cells with age. The cells in the GCA of older mice tended to be more mature than in young mice.

  • PDF

The Effects of Complex Motor Training on Motor Function and Synaptic Plasticity After Neonatal Binge-like Alcohol Exposure in Rats (복합운동훈련이 신생 흰쥐의 알코올성 소뇌손상 후 운동기능 및 신경연접가소성에 미치는 영향)

  • Lee, Sun-Min;Koo, Hyun-Mo;Kwon, Hyuk-Cheol
    • Physical Therapy Korea
    • /
    • v.12 no.3
    • /
    • pp.56-66
    • /
    • 2005
  • The purposes of this study were to test that complex motor training enhance motor function significantly, to test change in cerebellum, and to test the synaptic plasticity into the immunohistochemistry response of synaptophysin. Using an animal model of fetal alcohol syndrome - which equates peak blood alcohol concentrations across developmental period - the effects of alcohol on body weight during periods were examined. The effect of complex motor training on motor function and synaptic plasticity of rat exposed alcohol on postnatal days 4 through 10 were studied. Newborn rats were assigned to one of two groups: (1) normal group (NG), via artificial rearing to milk formula and (2) alcohol groups (AG), via 4.5 g/kg/day of ethanol in a milk solution. After completion of the treatments, the pups were fostered back to lactating dams, where they were raised in standard cages (two-and three animals per cage) until they were postnatal 48 days. Rats from alcohol group of postnatal treatment then spent 10 days in one of two groups: Alcohol-experimental group was had got complex motor training (learning traverse a set of 6 elevated obstacles) for 4 weeks. The alcohol-control group was not trained. Before consider replacing with "the experiment/study", (avoid using "got" in writing) the rats were examined during four behavioral tests and their body weights were measured, then their coronal sections were processed in rabbit polyclonal antibody synaptophysin. The synaptophysin expression in the cerebellar cortex was investigated using a light microscope. The results of this study were as follows: 1. The alcohol groups contained significantly higher alcohol concentrations than the normal group. 2. The alcohol groups had significantly lower body weights than the normal group. 3. In alcohol groups performed significantly lower than the normal group on the motor behavioral test. 4. In alcohol-control group showed significantly decreased immunohistochemistric response of the synaptophysin in the cerebellar cortex compared to the nomal group. These results suggest that improved motor function induced by complex motor training after postnatal exposure is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity. Also, these data can potentially serve as a model for therapeutic intervention.

  • PDF

ULTRASTRUCTUAL ANALYSIS OF THE FIBROUS LAYER OF CONDYLE IN THE RAT TEMPOROMANDIBULAR JOINT WITH AGEING (가령에 따른 흰쥐 하악과두 섬유층의 미세구조 및 교원원섬유의 변화)

  • Byeon, Ki-Jeong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.4
    • /
    • pp.305-315
    • /
    • 1998
  • The fibrous layer of mandibular condyle of the neonatal, 1-, 7-, 14-, 27-, 55-days and 1 year old rats were examined in the electron microscope with particular attention to the ultrastructure and diameter of collagen fibrils. In the 1-day rats, most of the cells of the fibrous layer were undifferentiated mesenchymal cells and fibroblasts with rough a little developed rough endoplasmic reticulum(RER) and golgi apparatus(GA). In 7-, 17 and 27-days old rats, most of the fibroblast showed well developed GA and RER with widely distended cisternae containing granular materials. In many of these cells contained intracytoplasmic filaments among the cytoplamic organelle. In 55-day and 1-year old rats, three types of cells were observed, ie, cells containing well developed cytoplasmic organelle presumed to be involved in the collagen fibril synthesis, cells showing well developed lysosomes, golgi apparatus, mitochondria and short cytoplasmic process presumed to be involved in the active resorption of the injured collagen fibrils or cellular debris, cells containing many intracytoplasmic filaments and a little organelle presumed to be cells of inactive state. The average diameters of collagen fibrils were similar in 1- and 7-day old rats as $38.48{\pm}3.81nm$, $38.06{\pm}3.86nm$. That was thickest in 14 days old rats as $50.21{\pm}3.93nm$ among experimental groups. They were gradually thinner in 27-, 55-day rats as $40.05{\pm}2.52nm$, $43.63{\pm}1.20nm$ and thinnest in 1-year old rats as $37.38{\pm}2.17nm$. The distribution pattern of diameters of collagen fibrils were unimordal with peak of 30-60nm in rats from 1-day to 17-day old. With aging from 27-day to 1 year old rats, collagen fibril diameters showed wide distribution pattern and percentage of thin collagen fibrils increased. These results may show the functional adaptation of fibrous layer of mandibular condyle to the increased mechanical forces with aging.

  • PDF

Expression of nitric oxide synthase isoforms and N-methyl-D-aspartate receptor subunits according to transforming growth factor-β1 administration after hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저산소 허혈 뇌손상에서 Transforming Growth Factor-β1 투여에 따른 Nitric Oxide Synthase 이성체와 N-methyl-D-aspartate 수용체 아단위의 발현)

  • Go, Hye Young;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.594-602
    • /
    • 2009
  • Purpose : Transforming growth factor (TGF)-${\beta}1$ reportedly increases neuronal survival by inhibiting the induction of inducible nitric oxide synthase (NOS) in astrocytes and protecting neurons after excitotoxic injury. However, the neuroprotective mechanism of $TGF-{\beta}1$ on hypoxic-ischemic (HI) brain injury in neonatal rats is not clear. The aim of this study was to determine whether $TGF-{\beta}1$ has neuroprotective effects via a NO-mediated mechanism and N-methyl-D-aspartate (NMDA) receptor modulation on perinatal HI brain injury. Methods : Cortical cells were cultured using 19-day-pregnant Sprague-Dawley (SD) rats treated with $TGF-{\beta}1$ (1, 5, or 10 ng/mL) and incubated in a 1% O2 incubator for hypoxia. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 h of hypoxic exposure (7.5% $O_2$). $TGF-{\beta}1$ (0.5 ng/kg) was administered intracerebrally to the rats 30 min before HI brain injury. The expressions of NOS and NMDA receptors were measured. Results : In the in vitro model, the expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS) increased in the hypoxic group and decreased in the 1 ng/mL $TGF-{\beta}1-treated$ group. In the in vivo model, the expression of inducible NOS (iNOS) decreased in the hypoxia group and increased in the $TGF-{\beta}1$-treated group. The expressions of eNOS and nNOS were reversed compared with the expression of iNOS. The expressions of all NMDA receptor subunits decreased in hypoxia group and increased in the $TGF-{\beta}1$-treated group except NR2C. Conclusion : The administration of $TGF-{\beta}1$ could significantly protect against perinatal HI brain injury via some parts of the NO-mediated or excitotoxic mechanism.

Baicalein and wogonin inhibit collagen deposition in SHR and WKY cardiac fibroblast cultures

  • Kong, Ebenezer K.C.;Huang, Yu;Sanderson, John E.;Chan, Kar-Bik;Yu, Shan;Yu, Cheuk-Man
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • In order to demonstrate the potential therapeutic effect of two flavonoids, Baicalein and Wogonin, on suppression of pathological myocardial fibrosis in hypertension, we investigated their in vitro effects on collagen expression in primary cultured cardiac fibroblasts isolated from neonatal normotensive (WKY) and hypertensive (SHR) rats. Our results showed that over-expression of collagen mRNA and protein induced in cardiac fibroblasts by angiotensin (AngII) could be attenuated significantly by both flavonoids at an optimal dosage ($30\;{\mu}M$; P < 0.01). Results of immunoblots showed that expression of 12-LO level, p-ERK/ ERK ratio and MMP-9 in AngII-stimulated SHR cardiac fibroblasts were significantly down-regulated by both flavonoids. Our results show that both Baicalein and Wogonin can suppress collagen deposition in AngII-stimulated SHR and WKY cardiac fibroblasts.