• Title/Summary/Keyword: neighboring pixels

Search Result 152, Processing Time 0.031 seconds

Data Hiding Technique using the Characteristics of Neighboring Pixels and Encryption Techniques

  • Jung, Soo-Mok
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.163-169
    • /
    • 2022
  • In this paper, we propose a data hiding technique that effectively hides confidential data in the LSB of an image pixel by using the characteristics of the neighboring pixels of the image and the encryption techniques. In the proposed technique, the boundary surface of the image and the flat surface with little change in pixel values are investigated. At the boundary surface of the image, 1 bit of confidential data is encrypted and hidden in the LSB of the boundary pixel to preserve the characteristics of the boundary surface. In the pixels of the plane where the change in pixel value is small, 2 bits secret data is encrypted and hidden in the lower 2 bits of the corresponding pixel. In this way, when confidential data is hidden in an image, the amount of confidential data hidden in the image is greatly increased while maintaining excellent image quality. In addition, the security of hidden confidential data is strongly maintained. When confidential data is hidden by applying the proposed technique, the amount of confidential data concealed increases by up to 92.2% compared to the existing LSB method. The proposed technique can be effectively used to hide copyright information in commercial images.

Reduction of Dynamic False Contour in PDP using Equalizing Pulses

  • Seo, Ki-Ho;Whang, Ki-Woong
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.8-12
    • /
    • 2003
  • In this paper, we report relatively simple equalizing pulse method for reducing dynamic false contour in PDP. Calculation cost is reduced by limiting pixels to add equalizing pulse and using look-up-table(LUT) for given subfield pattern. Pixels to be modified are determined after comparing selected number of most significant bits(MSB) with those of adjacent pixels. The equalizing pulse amount is determined by consulting LUT, which is for a fixed velocity of 1 pixel/tv field. Even though the suggested scheme does not cover every luminance combination of neighboring pixels, it is expected to work well after appropriate modifications are made according to the velocity.

NON-CAUSAL INTERPOLATIVE PREDICTION FOR B PICTURE ENCODING

  • Harabe, Tomoya;Kubota, Akira;Hatori, Yoshinoir
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.723-726
    • /
    • 2009
  • This paper describes a non-causal interpolative prediction method for B-picture encoding. Interpolative prediction uses correlations between neighboring pixels, including non-causal pixels, for high prediction performance, in contrast to the conventional prediction, using only the causal pixels. For the interpolative prediction, the optimal quantizing scheme has been investigated for preventing conding error power from expanding in the decoding process. In this paper, we extend the optimal quantization sceme to inter-frame prediction in video coding. Unlike H.264 scheme, our method uses non-causal frames adjacent to the prediction frame.

  • PDF

Efficient Median Filter Using Irregular Shape Window

  • Pok, Gou Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.601-607
    • /
    • 2018
  • Median filtering is a nonlinear method which is known to be effective in removing impulse noise while preserving local image structure relatively well. However, it could still suffer the smearing phenomena of edges and fine details into neighbors due to undesirable influence from the pixels whose values are far off from the true value of the pixel at hand. This drawback mainly comes from the fact that median filters typically employ a regular shape window for collecting the pixels used in the filtering operation. In this paper, we propose a median filtering method which employs an irregular shape filter window in collecting neighboring pixels around the pixel to be denoised. By employing an irregular shape window, we can achieve good noise suppression while preserving image details. Experimental results have shown that our approach is superior to regular window-based methods.

Region-Based Gradient and Its Application to Image Segmentation

  • Kim, Hyoung Seok
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • In this study, we introduce a new image gradient computation based on understanding of image generation. Most images consist of groups of pixels with similar color information because the images are generally obtained by taking a picture of the real world. The general gradient operator for an image compares only the neighboring pixels and cannot obtain information about a wide area, and there is a risk of falling into a local minimum problem. Therefore, it is necessary to attempt to introduce the gradient operator of the interval concept. We present a bow-tie gradient by color values of pixels on bow-tie region of a given pixel. To confirm the superiority of our study, we applied our bow-tie gradient to image segmentation algorithms for various images.

An Enhanced Deinterlacing Algorithm using New Edge-Directed Interpolation (새로운 에지 방향 보간법을 이용한 개선된 디인터레이싱 알고리즘)

  • Son, Joo-Young;Lee, Dong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1066-1072
    • /
    • 2009
  • This paper proposes a method to reduce the complexity and improve the performance for gentle-slope edges which is the disadvantage of deinterlacing algorithm using the new edge-directed interpolation. To improve the performance for gentle-slope edges, the proposed algorithm increases the number of neighboring reference pixels. To reduce the artifacts and the computational complexity, the proposed algorithm adaptively determines the number of neighboring reference pixels. With computer simulations for a variety of images, it shows that the proposed algorithm provides improved performance in PSNR and subjective evaluation compared with the existing algorithm.

  • PDF

Closely Spaced Target Detection using Intensity Sorting-based Context Awareness

  • Kim, Sungho;Won, Jin-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1839-1845
    • /
    • 2016
  • Detecting remote targets is important to active protection system (APS) or infrared search and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the detection capability by increasing background noise level in the CFAR detector. This paper presents a context aware CFAR detector by the intensity sorting and selection of background region to reduce the effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of neighboring targets can be recognized by intensity sorting where neighboring targets usually show highest ranks. The proposed background statistics (mean, standard deviation) estimation method from median local pixels can be aware of the background context and reduce the effects of the neighboring targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed method produced an enhanced detection rate with the same false alarm rate compared with the hysteresis-CFAR (H-CFAR) detection.

Adaptive Threshold Determination Using Global and local Fuzzy Measures

  • Jin, Mun-Gwang;Woo, Dong-Min;Lee, Kyu-Wong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper presents a new image segmentation method using fuzzy measures which reflect the local property of an image as well as the global property of an image An image is globally segmented into the crisp region and the ambiguous region in terms of the Index of fuzziness measured over all pixels of an image. The ambiguous region is luther partitioned into background and object in terms of the index of fuzziness computed over the set of neighboring pixels reflecting the local property most. From the experimental results, this method shows the effective ambiguity handling capability in segmenting an image.

Scalable Coding of Depth Images with Synthesis-Guided Edge Detection

  • Zhao, Lijun;Wang, Anhong;Zeng, Bing;Jin, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4108-4125
    • /
    • 2015
  • This paper presents a scalable coding method for depth images by considering the quality of synthesized images in virtual views. First, we design a new edge detection algorithm that is based on calculating the depth difference between two neighboring pixels within the depth map. By choosing different thresholds, this algorithm generates a scalable bit stream that puts larger depth differences in front, followed by smaller depth differences. A scalable scheme is also designed for coding depth pixels through a layered sampling structure. At the receiver side, the full-resolution depth image is reconstructed from the received bits by solving a partial-differential-equation (PDE). Experimental results show that the proposed method improves the rate-distortion performance of synthesized images at virtual views and achieves better visual quality.

An Efficient Image Encryption Scheme Based on Quintuple Encryption Using Gumowski-Mira and Tent Maps

  • Hanchinamani, Gururaj;Kulkarni, Linganagouda
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.56-69
    • /
    • 2015
  • This paper proposes an efficient image encryption scheme based on quintuple encryption using two chaotic maps. The encryption process is realized with quintuple encryption by calling the encrypt(E) and decrypt(D) functions five times with five different keys in the form EDEEE. The decryption process is accomplished in the reverse direction by invoking the encrypt and decrypt functions in the form DDDED. The keys for the quintuple encryption/decryption processes are generated by using a Tent map. The chaotic values for the encrypt/decrypt operations are generated by using a Gumowski-Mira map. The encrypt function E is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage scrambles all the rows and columns to chaotically generated positions. This stage reduces the correlation radically among the neighboring pixels. The pixel value rotation stage circularly rotates all the pixels either left or right, and the amount of rotation is based on chaotic values. The last stage performs the diffusion four times by scanning the image in four different directions: Horizontally, Vertically, Principal diagonally and Secondary diagonally. Each of the four diffusion steps performs the diffusion in two directions (forward and backward) with two previously diffused pixels and two chaotic values. This stage ensures the resistance against the differential attacks. The security and performance of the proposed method is investigated thoroughly by using key space, statistical, differential, entropy and performance analysis. The experimental results confirm that the proposed scheme is computationally fast with security intact.