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.jpABSTRACTThis paper des
ribes a non-
ausal interpolative predi
tionmethod for B-pi
ture en
oding. Interpolative predi
tion uses
orrelations between neighboringpixels, in
luding non-
ausalpixels, for high predi
tion performan
e, in 
ontrast to the
onventional predi
tion, using only the 
ausal pixels. Forthe interpolative predi
tion, the optimal quantizing s
hemehas been investigated for preventing 
oding error power fromexpanding in the de
oding pro
ess. In this paper, we extendthe optimal quantization s
eme to inter-frame predi
tion invideo 
oding. Unlike H.264 s
heme, our method uses non-
ausal frames adja
ent to the predi
tion frame.Keywords: non-
ausal interpolative, B-pi
ture, image pro-
essing, optimal quantization s
heme1. INTRODUCTIONPredi
tive 
oding is examined as a type of highly ef�
ient
oding, using spatially and temporally high-
orrelationmeth-ods, su
h as differential pulse 
ode modulation (DPCM)and motion 
ompensated predi
tion (MC). However these
onventional predi
tive 
oding te
hniques use only 
ausalsignals. As for time-varying image, it is known that thereis strong 
orrelation interpixel or interframe. Therefore,predi
tive 
oding using pixels that will be en
oded in fu-ture, 
an the predi
tion performan
e improve [1℄. We 
alledthis method �non-
ausal interpolative predi
tion in this pa-per. For this interpolative predi
tion, the optimal quantizings
heme (OQS) has been proposed to suppress the 
oding er-ror power expantion by minimizing quantization errors [2℄,[3℄. B-pi
ture �Bi-Dire
tional Predi
tive Pi
ture, is basedon en
oding method the interframe predi
tion 
oding: B-pi
ture is en
oded using I (Intra 
oded) pi
ture or P (Pre-di
tive 
oded) pi
ture as the referen
e frames. The 
om-pression 
an be as lowest as possible the highest in
reasingthe number of B-pi
tures, however, there is a problem thatthe predi
tion error in
reases with the possible time intervalbetween the IP pi
ture.This paper presents a novel en
oding method based onnon-
ausal interpolative predi
tion in the time dire
tion. Weshow that non-
ausal interpolative predi
tion 
an redu
e thepredi
tion error and that using OQS in the non-
ausal inter-

polative predi
tion provides higher PSNR than the 
onven-tional B-frame 
oding method.2. PICTURE STRUCTURE IN ENCODINGOne method used in various video formats to redu
e �lesize is interframe predi
tion. For many frames of movingimage, the only differen
e between one frame and anotheris the result of either the 
amera moving or an obje
t inthe frame moving. In referen
e to a video �le, this meansmu
h of the information of one frame will be the same thatof the next frame. The three major pi
ture types used inthe interframe predi
tion are I, P, and B. Figure.1 shows asimpli�ed diagram of the pi
ture stru
ture.
I B B P PB B

Fig. 1: Pi
ture stru
ture in en
odingI-pi
tures are the least 
ompressible but don't requireother video frames to de
ode. P-pi
tures 
an use data fromprevious I frames to de
ompress and are more 
ompressiblethan I frames. B-pi
tures 
an use both previous and forwardframes for data referen
e to get the highest amount of data
ompression.3. INTERPOLATIVE PREDICTION CODINGUSING THE OPTIMAL QUANTIZING SHEMEThis se
tion des
ribes interpolative predi
tion 
oding pro-
ess and the problem that the 
oding error power expandsin the de
oding pro
ess. We also show the optimal quantiz-ing s
heme suppresses the 
oding error power.3.1 Inter polative predi
tion 
odingInterpolative predi
tion 
oding is a blo
k-based 
odingmethod.Figure. 2 shows a n pixel� 1 line image blo
k as an exam-
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ple of interpolative predi
tion 
oding.
Fig. 2: Examlpe of interpolative predi
tive 
odingThe bla
k 
ir
les in the �gure are pixels already en
odedby some method. The other pixels are predi
ed from theaverage values of the neighboring two pixels. The en
odingpro
ess for xi(i = 2; 3; � � � ; n� 1) is expressed asyi = xi � 12(xi�1 + xi+1) (1)where yi denotes the predi
tion error of xi. The en
odingpro
ess of all the pixels within the blo
k 
an be expressedin ve
tor-matrix from asy = Cx (2)where x is the ve
tor obtained by lexi
ographi
 ordering ofthe pixel value within the blo
k, y is the predi
tion errorve
tor, andC is the n� n 
oding matrix su
h thatC = 266666664 1� 12 1 � 12 0� 12 1 � 12. . . . . . . . .0 � 12 1 � 121

377777775 :The predi
tive errors are quantized for higher 
ompression.Letq be the ve
tor of the quantizing error. The 
oding errorve
tor, whi
h is obtained from the differen
e between thetrue value and the de
oded value, 
an be expressed ase = Aq (3)where A is the n � 2 � n � 2 submatrix 
omposed of theelements ofC�1 
orresponding to the pixels to be en
oded.The mean square 
oding error, i.e., the 
oding error power,is D = E[eT e℄= Tr[ATA℄�2q (4)= Tr[B℄�2q (B := ATA)where �2q is the quantization error power and Tr[℄ representstra
e operation.Therefore, it is found that the 
oding error power is lagerthan the quantization error power be
ause of Tr[B℄ > 1 .In the 
onventional DPCM, these powers 
an be equal.3.2 Optimal Quantizing ShemeThe optimal quantizing s
heme (OQS) uses proposed as ahighly ef�
ient 
oding method to solve the above problem[2℄, [3℄. Figure. 3 shows the blo
k diagram of the OQSen
oder.

Fig. 3: Blo
k diagram of optimal quantizing s
hemeIn this s
heme, previously quantized errors within theblo
k are stored in memory. The differential quantizationof the i th pixel is performed after adding the stored errorsqj (j = 1; 2; � � � ; i � 1) multiplied by 
oef�
ient ki;j tothe predi
tion error yi. The i th output of the s
heme is
omputed as zi = yi + i�1Xj=2 ki;jqj + qi: (5)Be
ause of the stru
ture of the OQS, the 
oef�
ient matrixK be
ame the upper triangular matrix
K = 266666664 1 0 � � � � � � 0k21 1 0 ...k31 k32 1 . . . ...... ... . . . 0kn1 � � � � � � kn;n�1 1

377777775 :Here, we determine the value ofK. The differential quan-tization error ve
tor through the OQS is written byq0 =Kq; (6)so that the 
oding error ve
tor for the OQS is 
omputed ase0 = Aq0: (7)Hen
e, using (7), the 
oding error power in the OQS resultin G = E[e0Te0℄= Tr[KTATAK℄�2q= Tr[KTBK℄�2q (8)= Tr[F ℄�2qwhereF :=KTBK is diagonalmatrix. Here, the matri
es
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dividingB andK su
h thatB = � b11 bT1b1 B1 � = 24 b11 bT1b1 b22 bT2b2 B2 35= 2666664 . . . bii bTibi Bi
3777775

K = 26666664 1k1 1k2 . . . 1ki . . .
37777775 ;ea
h diagonal element of F 
an be expressed asfi = � 1 kTi �Bi�1 � 1ki �S (9)where B0 = B. The optimal 
oef�
ient ve
tor ki;opt andthe minimum of fi in the OQS 
an be determined as followski;opt = �B�1i bi (10)fi;min = bii � bTi B�1i bi (11)Therefore, the minimum 
oding error power is given byG = D � (Xi bTi B�1i bi)�2q : (12)Sin
e the se
ond term in (12) is nonnegative, the 
odingerror power in the OQS is smaller than that when the s
hemeis not used.3.3 OQS for inter-frame predi
tionWe use Non-
ausal interpolative predi
tion in the time di-re
tion and redu
e the predi
tion error of B pi
ture. In ad-dition, PSNR is improved by using the optimal quantizingsheme. In this paper, �one-dimensional interpolative predi
-tion� in the temporal domain, and use the blo
k of the sameposition with the frame before and after 
ompared with a
ertain blo
k of the frame for en
oding. The differen
e isobtained at every blo
k by non-
ausal interpolative predi
-tion. Figure.4 shows the en
oding expression (y = Cx) tothird frame when 8 pixel � 8 lines one blo
k as example innon-
ausal interpolative predi
tion.4. COMPUTER SIMULATION4.1 Simulation 
onditionComputer simulations were 
arried out to evaluate the prfor-man
e of the proposed method. In the 
onventional bi-dire
tional predi
tion method, ea
h frame is predi
ted as
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Fig. 4: Example of en
oding expressiona linealy weighted both ends of the obje
tive frame for en-
oding. We use only luminan
e 
omponent of an imagewith 720� 480 resolution. Blo
k size 8 pixel� 8 lines andframes of both ends used have true values. The motion 
om-pensation was not used, the position where the blo
k of in-traframe was �xed. Moreover, the simulation result 
hangesgreatly depending on the 
hara
teristi
 of the quantizer. Inthis paper, we use a linear quantizer with 
onstant steps.The step width is 
hanged by quantization parameter QP.4.2 Comparison by Entropy and Predi
tion errorWe 
ompared the 
onventionalmethod (
ausal-interpolativepredi
tion) and the propoed method (non-
ausal interpola-tive predi
tion) in the predi
tion error and the Entropy. Figure.5and Figure.6 shows the histogram of the predi
tion errorwhen the number of frame is �ve. It 
an be seen that theproposedmethod gathers error in the 
enter distribution, and
an suppress the predi
tion error 
omparedwith the 
onven-tional method.Next, Table 1 shows the result of the entropy. The pro-posed method 
an redu
e by 0.74bit 
omparedwith the 
on-ventional method in 5 frames. Moreover, the differen
e be-tween the 
onventional method and the proposed method is1.22bit in 10 frames. When 
omparing it by ea
h method,The 
onventional method in
reased by 0.38bit, and tendedto de
rease by 0.09bit by the proposed method. Even if thenumber of frames in
reases, in the proposed method the en-tropy doesn't 
hange. Therefore, it 
an be said that there iseffe
tiveness be
ause the predi
tion error is redu
ed and en-tropy is kept low when non-
ausal interpolative predi
tionis applied in the time dire
tion.Table 1: Entropy 
omparing of ea
h number of framesEntropy (bit) Frame:5 Frame:10
onventional method 6.77 7.15proposed method 6.02 5.93
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Fig. 5: Histogram of 
ausal interpolative method
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Non-causal interpolative prediction

Fig. 6: Histogram of non-
ausal interpolative method4.3 Comparison by PSNR and entropy of after de
od-ingFigure.7 shows themeasured peak signal to noise ratio (PSNR)as a fun
tion of the entropy and 
ompares 
ausal and non-
ausal interpolative predi
tion 
oding. Quantization param-eters(QP) has 
hanged into 3 to 30. There is a moving obje
tin the obtained blo
k. Entropy de
reases 0.44bit but PSNRis low about 5.6dB by non-
ausal interpolative predi
tion.It is 
onsidered that the en
oding error is in
reased whende
oding. PSNR in
reased by 4.76dB after applying theoptimal quantizing s
heme to this non-
ausal interpolativepredi
tion and the entropy in
reased by 0.18bit. Therefore,PSNR was improved at the same entropy 
ompared with the
onventional method.5. CONCLUSIONIn this paper, we showed that predi
tion error redu
tion andPSNR inprovement 
an be a
hieved by extending non-
ausalinterpolative predition with OQS in to the time dire
tionfor B-pi
ture 
oding. As future work, we take into a

ountwithin 
ompensation in the proposed method and fast algo-rithm on 
al
ulation inverse of the 
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