• Title/Summary/Keyword: neighborhood search algorithm

Search Result 75, Processing Time 0.029 seconds

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.

Tabu search Algorithm for Maximizing Network Lifetime in Wireless Broadcast Ad-hoc Networks (무선 브로드캐스트 애드혹 네트워크에서 네트워크 수명을 최대화하기 위한 타부서치 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1196-1204
    • /
    • 2022
  • In this paper, we propose an optimization algorithm that maximizes the network lifetime in wireless ad-hoc networks using the broadcast transmission method. The optimization algorithm proposed in this paper applies tabu search algorithm, a metaheuristic method that improves the local search method using the memory structure. The proposed tabu search algorithm proposes efficient encoding and neighborhood search method to the network lifetime maximization problem. By applying the proposed method to design efficient broadcast routing, we maximize the lifetime of the entire network. The proposed tabu search algorithm was evaluated in terms of the energy consumption of all nodes in the broadcast transmission occurring in the network, the time of the first lost node, and the algorithm execution time. From the performance evaluation results under various conditions, it was confirmed that the proposed tabu search algorithm was superior to the previously proposed metaheuristic algorithm.

A Tabu Search Heuristic Algorithm for Hierarchical Location Allocation Problem (광대역 융합 가입자 망 설계를 위한 타부서치 알고리즘 개발)

  • Park, Gi-Gyeong;Lee, Yeong-Ho;Kim, Yeong-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.131-135
    • /
    • 2008
  • In this paper, we deal with a hierarchical location-allocation problem in designing the broadband convergence networks (BcN). The objective is to minimize the total cost of switch and cable while satisfying the quality of service (QoS). We formulate the problem as an integer programming model and develop the Tabu Search (TS) heuristic algorithm to find a good feasible solution within a reasonable time limit. Initial solution is obtained by using the tree structure. Three neighborhood generation mechanisms are used by local search heuristic: insertion, switch up, and switch down. In order to demonstrate the effectiveness of the proposed algorithm, we generate lower bounds from nonlinear QoS relaxation problem. We present promising computational results of the proposed solution procedures.

  • PDF

A Voronoi Tabu Search Algorithm for the Capacitated Vehicle Routing Problem (차량경로 문제에 관한 보로노이 다이어그램 기반 타부서치 알고리듬)

  • Kwon, Yong-Ju;Kim, Jun-Gyu;Seo, Jeongyeon;Lee, Dong-Ho;Kim, Deok-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.469-479
    • /
    • 2007
  • This paper focuses on the capacitated vehicle routing problem that determines the routes of vehicles in such a way that each customer must be visited exactly once by one vehicle starting and terminating at the depot while the vehicle capacity and the travel time constraints must be satisfied. The objective is to minimize the total traveling cost. Due to the complexity of the problem, we suggest a tabu search algorithm that combines the features of the existing search heuristics. In particular, our algorithm incorporates the neighborhood reduction method using the proximity information of the Voronoi diagram corresponding to each problem instance. To show the performance of the Voronoi tabu search algorithm suggested in this paper, computational experiments are done on the benchmark problems and the test results are reported.

High -Level Synthesis for Asynchronous Systems using Transformational Approaches (변형기법을 이용한 비동기 시스템의 상위수준 합성기법)

  • 유동훈;이동익
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.105-108
    • /
    • 2002
  • Although asynchronous designs have become a promising way to develop complex modern digital systems, there is a few complete design framework for VLSI designers who wish to use automatic CAD tools. Especially, high-level synthesis is not widely concerned until now. In this paper we Proposed a method for high-level synthesis of asynchronous systems as a part of an asynchronous design framework. Our method performs scheduling, allocation, and binding, which are three subtasks of high-level synthesis, in simultaneous using a transformational approach. To deal with complexity of high-level synthesis we use neighborhood search algorithm such as Tabu search.

  • PDF

A Symbiotic Evolutionary Algorithm for Balancing and Sequencing Mixed Model Assembly Lines with Multiple Objectives (다목적을 갖는 혼합모델 조립라인의 밸런싱과 투입순서를 위한 공생 진화알고리즘)

  • Kim, Yeo-Keun;Lee, Sang-Seon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.3
    • /
    • pp.25-43
    • /
    • 2010
  • We consider a multi-objective balancing and sequencing problem in mixed model assembly lines, which is important for an efficient use of the assembly lines. In this paper, we present a neighborhood symbiotic evolutionary algorithm to simultaneously solve the two problems of balancing and model sequencing under multiple objectives. We aim to find a set of well-distributed solutions close to the true Pareto optimal solutions for decision makers. The proposed algorithm has a two-leveled structure. At Level 1, two populations are operated : One consists of individuals each of which represents a partial solution to the balancing problem and the other consists of individuals for the sequencing problem. Level 2, which is an upper level, works one population whose individuals represent the combined entire solutions to the two problems. The process of Level 1 imitates a neighborhood symbiotic evolution and that of Level 2 simulates an endosymbiotic evolution together with an elitist strategy to promote the capability of solution search. The performance of the proposed algorithm is compared with those of the existing algorithms in convergence, diversity and computation time of nondominated solutions. The experimental results show that the proposed algorithm is superior to the compared algorithms in all the three performance measures.

A Heuristic for Dual Mode Routing with Vehicle and Drone

  • Min, Yun-Hong;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper we consider the problem of finding the triplet (S,${\pi}$,f), where $S{\subseteq}V$, ${\pi}$ is a sequence of nodes in S and $f:V{\backslash}S{\rightarrow}S$ for a given complete graph G=(V,E). In particular, there exist two costs, $c^V_{uv}$ and $c^D_{uv}$ for $(u,v){\in}E$, and the cost of triplet (S,${\pi}$,f) is defined as $\sum_{i=1}^{{\mid}S{\mid}}c^V_{{\pi}(i){\pi}(i+1)}+2$ ${\sum_{u{\in}V{\backslash}S}c^D_{uf(u)}$. This problem is motivated by the integrated routing of the vehicle and drone for urban delivery services. Since a well-known NP-complete TSP (Traveling Salesman Problem) is a special case of our problem, we cannot expect to have any polynomial-time algorithm unless P=NP. Furthermore, for practical purposes, we may not rely on time-exhaustive enumeration method such as branch-and-bound and branch-and-cut. This paper suggests the simple heuristic which is motivated by the MST (minimum spanning tree)-based approximation algorithm and neighborhood search heuristic for TSP.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

On the Global Convergence of Univariate Dynamic Encoding Algorithm for Searches (uDEAS)

  • Kim, Jong-Wook;Kim, Tae-Gyu;Choi, Joon-Young;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.571-582
    • /
    • 2008
  • This paper analyzes global convergence of the univariate dynamic encoding algorithm for searches (uDEAS) and provides an application result to function optimization. uDEAS is a more advanced optimization method than its predecessor in terms of the number of neighborhood points. This improvement should be validated through mathematical analysis for further research and application. Since uDEAS can be categorized into the generating set search method also established recently, the global convergence property of uDEAS is proved in the context of the direct search method. To show the strong performance of uDEAS, the global minima of four 30 dimensional benchmark functions are attempted to be located by uDEAS and the other direct search methods. The proof of global convergence and the successful optimization result guarantee that uDEAS is a reliable and effective global optimization method.