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This paper focuses on the capacitated vehicle routing problem that determines the routes of vehicles in such a 
way that each customer must be visited exactly once by one vehicle starting and terminating at the depot while 
the vehicle capacity and the travel time constraints must be satisfied. The objective is to minimize the total 
traveling cost. Due to the complexity of the problem, we suggest a tabu search algorithm that combines the 
features of the existing search heuristics. In particular, our algorithm incorporates the neighborhood reduction 
method using the proximity information of the Voronoi diagram corresponding to each problem instance. To 
show the performance of the Voronoi tabu search algorithm suggested in this paper, computational experiments 
are done on the benchmark problems and the test results are reported.
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1. Introduction

Logistics, generally defined as the provision of 
goods and services from supply points to demand 
points, includes supply of raw materials to manu-
facturers, transfer of products to warehouses or 
depots, delivery of products to customers, and co-
llection of reusable and repairable products. Among 
various decision issues in logistics systems, we fo-
cus on vehicle routing, which is the problem of 
designing a set of routes for a fleet of vehicles. 
There are various types of vehicle routing prob-

lems according to the forms of vehicles (fleet size 
and capacity, type), customer information (demand 
size, demand type, and demand frequency), side 
constraints (time windows, the number of depots, 
and backhaul), etc.

Among various vehicle routing problems, this 
paper focuses on the capacitated vehicle routing 
problem (CVRP) that determines a set of routes 
by a fleet of vehicles, starting and terminating at 
the depot, to serve a given set of customers under 
the vehicle capacity and the travel time restric-
tions. From the theoretical viewpoint, the CVRP is 
an extension of the traveling salesman problem 
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(TSP). This implies that the CVRP is NP-hard 
(Lenstra and Rinnooy Kan 1981). On the other 
hand, from the practical viewpoint, the CVRP can 
be found commonly in the real fields. For exam-
ple, a distribution company in Turkey transporting 
electronic household commodities from plants to 
dealers (Barbarosoglu and Ozgur 1999) and a dis-
tribution company in Greece transporting fresh milk 
in the Athens area (Tarantilis and Kiranoudis 2002). 
Also, see Lee and Lee (2005), Seong and Moon 
(2006), Oh et al. (2006) for recent studies on the 
CVRP and its variations in Korea.

The CVRP was first introduced by Dantzig and 
Ramser (1959). Since then, the CVRP and its var-
iants have been studied extensively. In the 1960s, 
the CVRP was formulated as an integer program-
ming model. In the 1970s, the CVRP research fo-
cused on the two-phase heuristics, i.e., route buil-
ding and improvement. The most widely well- 
known route-building heuristic is the saving algo-
rithm by Clarke and Wright (1964) that considers 
the saving cost if routes are merged, and the 
well-known two-phase heuristic is the sweep algo-
rithm by Gillett and Miller (1974) that suggested 
the first clustering and second routing method. At 
this time, 2-opt and 3-opt algorithms, proposed by 
Lin and Kernighan (1973), were applied to the 
CVRP for route improvement. In the 1980s, math-
ematical programming-based algorithms and inter-
active heuristics were proposed. These heuristics 
required more computational effort and time, but 
gave very high-quality solutions. In the 1990s, the 
research focus shifted to applying meta-heuristics 
such as simulated annealing, deterministic anneal-
ing, neural network, ant colony, genetic algorithm 
and tabu search. Some of these algorithms pro-
duced highly accurate solutions for the benchmark 
problems. Osman (1993) suggested the first-best- 
admissible strategy and the best-admissible strategy 
for the tabu search algorithm with λ-interchange 
mechanism. Furthermore, he showed that tabu 
search is better than simulated annealing for the 
vehicle routing problem. Gendreau et al. (1994) sug-
gested the taburoute algorithm considering infeasi-
ble solutions using the genius algorithm proposed 
by Gendreau et al. (1992). Rochat and Taillard 
(1995) developed a tabu search algorithm using the 
concept of adaptive memory, and Toth and Vigo 
(2003) suggested the granular tabu search (GTS) 

that reduces the solution space effectively. See 
Laporte (1992) and Laporte et al. (2000) for liter-
ature reviews on the CVRP.

In this paper, we suggest a new tabu search al-
gorithm that combines the features of the existing 
search heuristics. In particular, the new tabu search 
algorithm incorporates the method to reduce the 
number of neighborhood solutions using the prox-
imity information of the Voronoi diagram corre-
sponding to each problem instance. Here, the Vor-
onoi diagram, which will be explained later, is a 
powerful tool in computational geometry which pr-
ovides all spatial information among geometric ob-
jects in a system with an efficient data structure 
(Kim et al. 2001a, b). To show the performance 
of the tabu search algorithm using the Voronoi di-
agram, computational experiments were done on 
the classic and the large-scale benchmark prob-
lems, and the test results show that our algorithm 
is competitive to the existing search heuristics, es-
pecially for the classic benchmark problems.

This paper is organized as follows. In the next 
section, the CVRP considered here is described in 
more detail, and an overview of the Voronoi dia-
gram is presented in Section 3. The new tabu sear-
ch algorithm is explained in Section 4, and the 
results of computational experiments are reported 
in Section 5. Finally, Section 6 concludes the pa-
per with a short summary and discussions on pos-
sible extensions. 

2.  Problem Description

The CVRP considered here is the problem of de-
termining a set of routes by a fleet of vehicles to 
serve a given set of customers under the vehicle 
capacity and the route duration restrictions. The 
objective is to minimize the total traveling cost. 
More formally, the CVRP may be described as 
follows. Let G = (V, E) be a complete graph, 
where V = {0, 1, 2, … , n} is the vertex set and 
E = {(i, j) : i ≠ j} is the edge set. The vertex 
0 denotes the depot, whereas the other vertices 
V\{0} correspond to the customers. Customer i is 
associated a demand qi and requires a service 
time δi. A non-negative cost cij, denoting the dis-
tance or travel time between customers i and j, is 
associated with each edge (i, j) ∈ E. It is as-
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sumed that the costs are symmetric, i.e., cij = cji 
for all i, j, and satisfy the triangle inequality, i.e., 
cik + ckj > cij for all i, j, k ∈V. A set of m 
identical vehicles, each with capacity Q, is avail-
able at the depot. To ensure the feasibility of the 
problem, we assume that qi ≤ Q for all i∈V\{0}. 
Also, each vehicle may travel at most one route, 
and the number of vehicles must not be smaller 
than mmin, where mmin is the minimum number of 
vehicles needed to serve the total demand of 
customers. 

A solution for the CVRP can be represented as 
a set of m routes R1, R2,…, Rm, and the problem 
is to determine the vehicle routes for the objective 
of minimizing the total traveling costs. Here, the 
rth route Rr can be represented as Rr = (0, ir1, ir2, 
…, 0), where irk denotes the index for the kth 
customer in route r. Besides the decision variable, 
the CVRP has the following constraints.

(a) All vehicles start and end at the depot.
(b) Every vertex of V\{0}is visited exactly once 

by exactly one vehicle.
(c) Each customer has a known demand that 

must be satisfied.
(d) The total demand of any route should not 

exceed the vehicle capacity Q. 
(e) The total length (or sum of service and 

travel times) of any route should not exceed 
L, where L is a preset route duration.

3.  Voronoi Diagram 

Before presenting the solution algorithm suggested 
in this paper, this section presents the basic con-
cept of the Voronoi diagram and the method to 
reduce the neighborhood solutions using the Voronoi 
diagram corresponding to each problem instance. 
We start with the Voronoi diagram structure that 
gives topological information among nodes in or-
der to reduce the search space and hence to get 
good solutions quickly. Since a Voronoi diagram 
provides the most compact and concise representa-
tion of the proximity information in Euclidean 
space, we adopt this structure in our algorithm.

The Voronoi diagram adopted here is defined on 
the two-dimensional Euclidean space. Consider a 
finite set of n points on the two-dimensional 
space. The n points are denoted by x1, x2,…, xn, 

with the Cartesian coordinates (x11, x12), (x21, x22), 
…, (xn1, xn2). Note that the n points are distinct 
in the sense that xi ≠ xj for i ≠ j, i, j ∈ {1, 
2, …, n}. Then, the planar ordinary Voronoi dia-
gram can be defined as follows. (See Okabe et 
al. (1992) for more details on the Voronoi diag-
ram.) In the definition, ∥xi – xj∥denotes the Eu-
clidean distance between xi and xj.

Definition. (Planar ordinary Voronoi diagram) Let 
X = {x1, x2,…, xn}⊂R2, where 2 < n < ∞ and 
xi ≠ xj for i ≠ j, i, j ∈{1, 2, …, n}. We call 
the region given by

V(xi) = {x |∥x – xi∥≤∥x – xj∥for all j
≠ i, j ∈{1, 2, …, n}}

the planar ordinary Voronoi polygon associated 
with xi (or the Voronoi polygon of xi), and the 
set given by

V = {V(x1), V(x2), … , V(xn)}

the planar ordinary Voronoi diagram generated by 
X (or the Voronoi diagram of X).

To illustrate the above definition more clearly, 
we generated the Voronoi diagram for a classic 
benchmark problem with 100 vertices using the 
algorithm suggested by Kim et al. (2001a, b), and 
it is shown in <Figure 1>. In this figure, we can 
see that the Voronoi diagram is the set of points 
that have the same Euclidean distance among the 
corresponding points.

Figure 1.  Voronoi diagram: and example

A number of useful information can be obtained 
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from the Voronoi diagram. Among them, in this 
paper, we use the proximity information to reduce 
the neighborhood solutions in the tabu search al-
gorithm suggested in this paper. Here, the prox-
imity information for a point implies the set of 
points associated with those adjacent to the Voronoi 
polygon including that point. For example, in 
<Figure 1>, the proximity information for point 
28 can be represented as P28 = {0, 1, 12, 26, 27, 
50, 53, 69, 76}. Note that the proximity informa-
tion implies that the points in Pi are relatively 
closer to point i than the others.

As stated earlier, the neighborhood generation 
method suggested in this paper uses the proximity 
information for each point. In other words, the 
complete graph G = (V, E) for the CVRP is re-
duced to G' = (V, E'), where G' is a sub-graph 
of G in the sense that E' is the set of edges ob-
tained from reducing the original edge set E using 
the proximity information of the corresponding 
Voronoi diagram for the vertex set V. 

To show the effect of the reduction based on 
the proximity information, we compare the number 
of edges of the original graph and the reduced 
sub-graph, i.e., |E| and |E'|, for each of the four-
teen classic benchmark problems of Christofides et 
al. (1979) and the twenty large-scale benchmark 
problems of Golden et al. (1998) and the results 
are summarized in <Table 1>. For example, in the 
CMT1, the original complete graph has 2450 
edges while the reduced sub-graph has 135 edges, 
which shows 94.5% reduction in the number of 
edges. Moreover, this table provides some infor-
mation that even though the size of problems is 
larger, the number of edges to E' slightly incr-
eases. In overall, it can be seen from that table 
that the percentage of reduction is quite high and 
hence it can be used to reduce the neighborhood 
solutions while applying the tabu search algorithm. 
However, the reduction method does not guarantee 
that the reduced edge set always contains the op-
timal solutions. 

Table 1.  Comparison of the numbers of edges: original and reduced graphs

Classic benchmark problems Large-scale benchmark problems

Problem ID |V|1 |E|2 |E'|3 % reduction Problem ID |V| |E| |E'| % reduction

CMT1   50 2450 135 94.5 G1 240 57360 640 98.9
CMT2   75 5550 209 96.2 G2 320 102080 880 99.1
CMT3 100 9900 284 97.1 G3 400 159600 1120 99.3
CMT4 150 22350 424 98.1 G4 480 229920 1360 99.4
CMT5 199 39402 582 98.5 G5 200 39800 560 98.6
CMT6   50 2450 135 94.5 G6 280 78120 1348 98.3
CMT7   75 5550 209 96.2 G7 360 129240 1008 99.2
CMT8 100 9900 284 97.1 G8 440 193160 1232 99.4
CMT9 150 22350 424 98.1 G9 255 64770 702 98.9
CMT10 199 39402 582 98.5 G10 483 232806 898 99.6
CMT11 120 14280 335 97.7 G11 252 63252 1118 98.2
CMT12 100 9900 272 97.3 G12 483 232806 1362 99.4
CMT13 120 14280 335 97.7 G13 252 63252 688 98.9
CMT14 100 9900 272 97.3 G14 320 102080 884 99.1

     G15 396 156420 1104 99.3
     G16 480 229920 1348 99.4
     G17 240 57360 702 98.8
     G18 300 89700 882 99.0
     G19 360 129240 1062 99.2
     G20 420 175980 1242 99.3

1 number of vertices 
2 number of edges 
3 number of edges reduced using the proximity information 
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4.  Voronoi Tabu Search Algorithm

The algorithm suggested in this paper, called the 
Voronoi tabu search (VTS) hereafter, consists of 
two phases: obtaining an initial solution and im-
provement. The improvement phase incorporates the 
method to reduce the number of edges using the 
proximity information of the Voronoi diagram when 
generating the neighborhood solutions. Each of the 
two phases is explained below.

4.1  Obtaining an Initial Solution

The initial solution is obtained with the savings 
algorithm of Clarke and Wright (1964). The sav-
ings algorithm starts with n routes that correspond 
to each of the n vertices. Then, the saving for 
each pair of vertices is computed and the pairs 
are sorted in the non-increasing order of the sav-
ings. Here, the saving between vertices i and j is 
defined as

sij = c0i + cj0 − cij,

where cij denotes the cost (distance or travel time) 
between vertices i and j. Finally, the vertices are 
merged according to this order until no further 
merges are possible while considering the vehicle 
capacity and the travel time restrictions.

4.2  Improvement

In this phase, the initial solution is improved by 
the ordinary tabu search procedure, together with 
the features of the existing search heuristics and 
the neighborhood reduction method using the Vor-
onoi diagram. Note that the tabu search is se-
lected in this study since it works better than oth-
er search heuristics (Cordeau and Laporte 2002). 

The tabu search heuristic, proposed by Glover 
(1989, 1990), is a well-known search technique to 
escape from terminating at prematured local opti-
mum. The tabu search heuristic starts with an ini-
tial solution. For each alternative S for vehicle 
routes, a new alternative S' is obtained with a 
function that transforms S into S'. This transfor-
mation is called a move in the tabu search liter-
ature, which can be made to the neighboring sol-
ution even though it is worse than the given so-

lution. To avoid cycling, the tabu search heuristic 
defines a set of moves that are tabu (forbidden), 
and these moves are sorted in a set  , called the 
tabu list. Elements of   define all tabu moves 
that cannot be applied to the current solution. The 
size of   is bounded by a parameter   called the 
tabu list size. If | | =   before adding a move to 
 , one must remove an element in it, generally 
the oldest one. Note that a tabu move can be al-
ways allowed to be chosen if it creates a solution 
better than the incumbent solution, i.e., the best 
objective value obtained so far. This is called the 
aspiration criterion in the literature.

An application of tabu search can be charac-
terized by: (a) representing solutions; (b) generat-
ing neighborhood solutions, and (c) termination con-
dition(s). In the following, we explain the details 
of these in the implementation of the tabu search 
heuristic suggested in this paper.

4.2.1  Representing  solutions
A solution of the CVRP is encoded by multiple 

strings, each of which represents an ordered set of 
vertices assigned to each vehicle. More formally, 
the solution is a set S of m routes R1, R2,…, Rm, 
where Rr = (0, ir1, ir2, …, 0). As defined earlier, 
0 and irk denote the depot and the index for the 
kth customer in route r, respectively.

4.2.2  Generating neighborhood solutions
To generate the neighborhood solutions, we use 

the -interchange method proposed by Osman and 
Christofides (1989). In this method, the neighbor-
hood solutions are generated by changing up to  
customers between two routes Ra and Rb. In other 
words, each change between the two routes is de-
scribed using a couple ( , ) (with   ≤  
and  ≤ ), where   vertices are moved from 
Ra to Rb, and   vertices are moved from Rb to 
Ra. Since the value of λ is often restricted to 1 
or 2 in order to limit the number of possible 
neighborhoods, we consider the cases with  = 1, 
which results in two types of moves, the swap 
with (1, 1) and the insertions with (1, 0) or (0, 
1). In this study, all pairs of vehicle routes are 
considered for the 1-interchange method. 

Although the value of  is restricted to 1, the 
number of neighborhoods to be searched is still 
large. Therefore, we use the method to reduce the 
neighborhoods. As explained earlier, the reduction 
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method is based on the proximity information of 
the Voronoi diagram. Consider an example with 
two routes, R1 = (0, 10, 5, 3, 2, 4, 6, 0) and R2 
= (0, 8, 7, 1, 9, 12, 11, 0). Suppose that vertex 
1 (in R2) with the proximity information of P1 = 
{0, 3, 5} is to be inserted into R1. Then, we can 
see that there exist seven possible positions to 
which vertex 1 can be inserted. Among them, we 
consider those in the proximity information P1. 
See <Figure 2(a)> for its pictorial description. (In 
the figure, the dashed arrows denote the possible 
positions for insertions considering the proximity 
information.) Like the insertion method, the swap 
method also reduces the number of neighborhood 
solutions using the proximity information. Consider 
the above example with R1 and R2. Suppose that 
vertex 1 (in R2) has the proximity information of 
P1 = {0, 3, 5} and vertex 5 (in P1) has P5 = {0, 
1, 9}. Then, vertices 1 and 5 can be swapped 
since P1 and P5 have 5 and 1, respectively. See 
<Figure 2(b)> for its pictorial description.

0
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10 5 3 2 4 6
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0

0
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(a) Insertion method

(b) Swap method

Figure 2.  Generating neighborhood solutions : 
examples

While the (reduced) neighborhoods are generated 
using the 1-interchange method, we allow the in-
feasible solutions with respect to the vehicle ca-
pacity and the travel length (or time) restriction in 
order to extend the search space. To do this, we 
handle the infeasible solutions through the penal-
ized objective function suggested by Gendreau et 
al. (1994). The mathematical description of the 
penalized objective function is given below. In 
this description, [x]+ = max(0, x) and xij = 1 if a 
vehicle route contains the edge (i, j), and 0 
otherwise.
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where   and   are positive parameters repre-
senting the penalties associated with the violations 
of the vehicle capacity and the travel length con-
straints, respectively. The penalty parameters are 
updated periodically, i.e., every t iterations. More 
specifically,   and   are multiplied by 2 if a 
feasible solution can be found during t iterations, 
and divided by 2, otherwise. In our implementa-
tion,   and   were initially set to 100, and t 
to 10 from a preliminary test. 

There may be several ways of selecting a move. 
Among them, this paper uses the method of ex-
amining the reduced neighborhood solutions (for 
the 1-interchange method) and taking the best move 
that is not tabu since it generally performs well. 
After the best move is done, the current solution 
is additionally improved by applying the 3-opt 
procedure.

4.2.3  Defining tabu moves 
The tabu moves are defined as follows. If ver-

tex i on route Rp is moved to route Rq at iter-
ation t, the move of i from Rp to Rq is declared 
tabu during t +   where   is the tabu list size. 
Here, the tabu list size   is determined using the 
simple dynamic tabu term rule of Glover and Laguna 
(1993). That is,   is set to an integer uniformly 
distributed over the interval [min, max]. As in 
Gendreau et al. (1994), the parameters min and 
max for our VTS algorithm were fixed to 5 and 
10, respectively. Note that the oldest tabu move is 
removed before adding a new one if the tabu list 
is full. As stated earlier, a tabu move can be al-
ways allowed to be chosen if it creates a solution 
better than the incumbent solution, i.e., the best 
objective value obtained so far.

4.2.4  Stopping condition
The improvement phase is terminated if no im-

provements have been made for a certain number 
t1 of iterations. In our implementation, the t1 was 
set to 50∙n from a preliminary test, where n is 
the number of vertices.  
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4.3  Intensification
After a solution is obtained using the improve-

ment method explained earlier, it can be improved 
once more in the intensification phase. The in-
tensification method is the same as that of the 
above improvement method except that the neigh-
borhood reduction method using the proximity in-
formation of the Voronoi diagram is not used 
when generating the neighborhoods. That is, the 
entire neighborhood solutions (for the 1-interchange 
method) are examined and the best move that is 
not tabu is taken. Finally, as in the improvement 
phase, the intensification phase is terminated if 
there are no improvements for a certain number t2 
of iterations. In our implementation, the t2 (< t1) 
was set to 10․n from a preliminary test. 

5.  Computational Experiments

To show the performance of the VTS algorithm, 
computational tests were done on the benchmark 
problems, the fourteen classic benchmark problems 
of Christofides et al. (1979) and the twenty large- 
scale benchmark problems of Golden et al. (1998). 
The classic benchmark problems contain between 

50 and 199 vertices in addition to the depot. 
Here, problems 1 to 5 and 11 to 12 have the ve-
hicle capacity restriction, while problems 6 to 10 
and 13 to 14 have the vehicle capacity and the 
travel distance (time) restrictions. On the other 
hand, the large-scale benchmark problems contain 
between 200 and 483 vertices in addition to the 
depot. Here, problems 1 to 8, generated in con-
centric circles around the depot, have the vehicle 
capacity and the travel distance (time) restrictions, 
while problems 9 to 12, generated in concentric 
squares with the depot located in one corner, have 
the vehicle capacity restriction. Also, problems 13 
to 20 were generated in concentric squares with 
the depot located in center. 

The VTS algorithm was coded in C, and the 
test was done on a workstation with an Intel Xeon 
processor operating at 3.20 GHz clock speed. The 
performance measures used are: (a) gap from the 
best known solution value and (b) CPU seconds. 
Here, the gap can be represented as 

100․(ZVTS − Z*) / Z*,

where ZVTS is the objective value obtained using 
the VTS algorithm and Z* is the best known sol-
ution value.

Table 2.  Test results on the classic benchmark problems

Problems Number 
of nodes

Without intensification phase With intensification phase
Best

knownValue Gap
(%)

CPU
to best

CPU
to end Value Gap

(%)
CPU

to best
CPU
to end

CMT 1   50 524.61 0.00 0.6 2.5 524.61 0.00 0.6 4.4 524.61

CMT 2   75 844.45 1.10 7.3 10.2 844.45 1.10 7.3 11.3 835.26
CMT 3 100 828.74 0.31 16.8 25.2 828.74 0.31 16.8 35.9 826.14
CMT 4 150 1042.80 1.40 15.5 37.8 1040.22 1.15 61.1 86.8 1028.42
CMT 5 199 1324.01 2.53 179.0 212.3 1324.01 2.53 179.0 257.2 1291.29
CMT 6   50 555.43 0.00 0.3 2.6 555.43 0.00 0.3 5.2 555.43
CMT 7   75 918.60 0.98 3.4 6.3 918.60 0.98 3.4 8.8 909.68
CMT 8 100 875.33 1.08 19.1 28.9 875.33 1.08 19.1 43.4 865.94
CMT 9 150 1177.14 1.25 61.6 83.7 1177.14 1.25 61.6 115.2 1162.55
CMT1 0 199 1441.88 3.30 132.5 165.9 1431.39 2.55 198.7 218.0 1395.85
CMT 11 120 1043.90 0.17 26.4 47.8 1043.90 0.17 26.4 101.6 1042.11
CMT 12 100 819.56 0.00 0.3 8.2 819.56 0.00 0.3 16.5 819.56
CMT 13 120 1567.26 1.69 28.1 42.9 1566.36 1.64 63.2 83.5 1541.14

CMT 14 100 866.37 0.00 2.5 9.7 866.37 0.00 2.5 23.5 866.37
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Table 3.  Test results on the large-scale benchmark problems

Problems Number 
of nodes

Without intensification phase With intensification phase
Best

knownValue Gap 
(%)

CPU 
to best

CPU
to end Value Gap 

(%)
CPU

to best
CPU
to end

G 1 240 5813.77 3.31 388.3 495.2 5812.30 3.28 803.1 1115.7 5627.54 
G 2 320 9085.65 7.55 463.5 670.8 9072.35 7.39 1766.2 2528.8 8447.92 
G 3 400 12087.60 9.53 845.3 1253.4 12080.70 9.46 1281.6 3072.3 11036.22 
G 4 480 15977.10 17.27 1317.6 1878.7 15847.00 16.31 8517.8 11194.0 13624.52 
G 5 200 6752.91 4.52 93.2 179.9 6752.91 4.52 93.2 770.2 6460.98 
G 6 280 9014.94 7.16 656.7 863.2 8992.02 6.88 1029.0 1935.6 8412.80 
G 7 360 11472.40 12.68 735.2 1030.9 11459.90 12.55 1044.3 2243.4 10181.75 
G 8 440 13039.80 11.80 2405.6 2820.6 13034.50 11.75 4314.2 6154.8 11663.55 
G 9 255 590.41 1.20 216.8 315.2 589.60 1.06 317.1 558.5 583.39 
G 10 323 755.33 1.86 577.3 737.1 749.78 1.11 1159.7 1577.1 741.56 
G 11 399 970.99 5.72 1585.3 1882.8 961.64 4.70 5420.6 6409.8 918.45 
G 12 483 1173.37 5.98 184.4 430.6 1173.37 5.98 184.4 1086.1 1107.19 
G 13 252 904.86 5.33 93.5 146.8 904.86 5.33 93.5 251.5 859.11 
G 14 320 1147.13 6.09 140.3 291.3 1143.47 5.75 464.3 689.0 1081.31 
G 15 396 1448.23 7.66 155.1 287.7 1439.71 7.02 293.8 641.0 1345.23 
G 16 480 1709.84 5.37 136.5 638.4 1706.25 5.15 644.3 1632.2 1622.69 
G 17 240 717.59 1.38 165.2 223.3 717.26 1.34 271.9 354.1 707.79 
G 18 300 1025.26 2.78 240.7 308.4 1023.64 2.62 477.3 565.3 997.52 
G 19 360 1405.09 2.80 729.6 873.1 1403.39 2.67 913.6 1102.8 1366.86 
G 20 420 1879.95 3.29 1721.3 1907.2 1879.44 3.26 1907.6 2107.1 1820.09 

Table 4.  Comparison of the results: classic benchmark problems

Problem

VST
Osman1 TABUROUTE2 GTS3 Best

known
Without 

intensification
With 

intensification
Value CPU Value CPU Value CPU Value CPU Value CPU

CMT1 524.61 2.47 524.61 4.38 524.61 67.2 524.61 360 524.61 48.6 524.61
CMT2 844.45 10.17 844.45 11.31 844.00 70.8 835.32 3228 838.60 132.6 835.26
CMT3 828.74 25.24 828.74 35.86 835.00 675 826.14 1104 828.56 143.4 826.14
CMT4 1042.80 37.75 1040.22 86.80 1044.35 3075 1031.07 2528 1033.21 270.6 1028.42
CMT5 1324.01 212.25 1324.01 257.20 1334.35 1972.7 1311.35 5454 1318.25 450 1291.29
CMT6 555.43 2.61 555.43 5.20 555.43 140.2 555.43 810 555.43 51.6 555.43
CMT7 918.60 6.25 918.60 8.78 911.00 203 909.68 3276 920.72 165 909.68
CMT8 875.33 28.91 875.33 43.44 866.75 1200 865.94 1536 869.48 174 865.94
CMT9 1177.14 83.70 1177.14 115.20 1184.00 2443.6 1162.89 4260 1173.12 340.2 1162.55
CMT10 1441.88 165.92 1431.39 217.99 1417.85 3310.1 1404.75 5988 1435.74 546.6 1395.85
CMT11 1043.90 47.83 1043.90 101.56 1042.11 1398.4 1042.11 1332 1042.87 190.8 1042.11
CMT12 819.56 8.16 819.56 16.50 819.59 407.5 819.56 960 819.56 66 819.56
CMT13 1567.26 42.94 1566.36 83.47 1547.00 1343 1545.93 3552 1545.51 560.4 1541.14
CMT14 866.37 9.74 866.37 23.53 866.37 5579 866.37 3942 866.37 84.6 866.37
Gap(%) 1.21 1.11 0.94 0.27 0.79
CPU(s) 48.85 72.23 1563.25 2737.86 230.31

1 tabu search algorithm of Osman (1993) (results on VAX 8600 computer)
2 TABUROUTE algorithm of Gendreau et al. (1994) (results on Silicon Graphics workstation, 36 MHz, 5.7 Mflops)
3 GTS (granular tabu search) algorithm of  Toth and Vigo (2003) (results on Pentium 200 MHz PC)
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Test results on the fourteen classic benchmark 
problems are summarized in <Table 2>. It can be 
seen from the table that the gaps of the VTS al-
gorithm without (with) the intensification phase 
range from 0 (0) to 3.30% (2.55%), and the over-
all average of the gaps is 1.11%. In particular, 
the VTS algorithm found the best solutions for 
CMT 1, 6, 12 and 14. However, the gaps get 
large as the problem size increases. Also, the VTS 
algorithm gave the solutions within a reasonable 
amount of computation time. This implies that the 
neighborhoods are effectively reduced by the prox-
imity information of the Voronoi diagram. Also, 
<Table 3> shows test results on the large-scale 
benchmark problems. In this table, we can see 
that the gaps are relatively large since the VTS 
algorithm considers a relatively small solution space. 
Compared with the existing algorithms, however, 
the CPU seconds were reasonable.

<Table 4> summarizes the results on the com-
parison between the VTS algorithm and the best 
existing algorithms, the tabu search algorithm of 
Osman (1993), the TABUROUTE algorithm of 
Gendreau et al. (1994), and the GTS (granular 
tabu search) algorithm of Toth and Vigo (2003), 
for the fourteen classic benchmark problems. It 
can be seen from the table that the VTS algo-
rithm is competitive to the existing algorithms in 
that the differences in the overall average percent-
age gap is less than 1% and the CPU second is 
much less than those of the existing algorithms 
(although the computing machines were different.). 
Similar results can be found in <Table 5> (between 
the VTS algorithm and the GTS algorithm) for 
the twenty large-scale benchmark problems. How-
ever, the differences in the overall average per-
centage gap get larger.

Table 5. Comparison of the results: large-scale benchmark problems

Problem

VTS
GTS Best 

knownImprovement Intensification

value CPU value CPU value CPU
Golden 1 5813.77 495.23 5812.30 1115.69 5736.15 298.8 5627.54 
Golden 2 9085.65 670.77 9072.35 2528.83 8553.03 496.8 8447.92 
Golden 3 12087.60 1253.42 12080.70 3072.31 11402.75 776.4 11036.22 
Golden 4 15977.10 1878.70 15847.00 11194.00 14910.62 907.8 13624.52 
Golden 5 6752.91 179.92 6752.91 770.22 6697.53 142.8 6460.98 
Golden 6 9014.94 863.22 8992.02 1935.56 8963.32 279.0 8412.80 
Golden 7 11472.40 1030.88 11459.90 2243.36 10547.44 699.6 10181.75 
Golden 8 13039.80 2820.55 13034.50 6154.77 12036.24 664.8 11663.55 
Golden 9 590.41 315.16 589.60 558.53 593.35 700.2 583.39 
Golden 10 755.33 737.13 749.78 1577.09 751.66 949.8 741.56 
Golden 11 970.99 1882.78 961.64 6409.84 936.04 1987.2 918.45 
Golden 12 1173.37 430.63 1173.37 1086.11 1147.14 2574.0 1107.19 
Golden 13 904.86 146.75 904.86 251.52 868.80 685.8 859.11 
Golden 14 1147.13 291.25 1143.47 688.95 1096.18 870.6 1081.31 
Golden 15 1448.23 287.66 1439.71 640.97 1369.44 1107.0 1345.23 
Golden 16 1709.84 638.38 1706.25 1632.23 1652.32 1384.2 1622.69 
Golden 17 717.59 223.33 717.26 354.05 711.07 857.4 707.79 
Golden 18 1025.26 308.44 1023.64 565.28 1016.83 1287.0 997.52 
Golden 19 1405.09 873.06 1403.39 1102.83 1400.96 1801.8 1366.86 
Golden 20 1879.95 1907.17 1879.44 2107.05 1915.83 2583.0 1820.09 
Gap(%) 9.44 9.18 4.18  

 CPU(s) 861.7 2299.5 1052.7 
See the footnotes of <Table 4>.
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6. Concluding Remarks

In this paper, we considered the capacitated ve-
hicle routing problem that determines a set of 
routes by a fleet of vehicles, starting and termi-
nating at the depot, to serve a given set of cus-
tomers under the vehicle capacity and the travel 
time restrictions for the objective of minimizing 
the total traveling cost. To solve the problem, a 
tabu search algorithm was suggested that incor-
porates the features of the existing algorithms. In 
particular, we suggested a neighborhood reduction 
method using the proximity information of the 
Voronoi diagram. To show the performances of 
the Voronoi tabu search algorithm suggested in 
this paper, computational experiments were done 
on various benchmark problems and the results 
show that our algorithm is competitive to the ex-
isting algorithms, especially in terms of computa-
tion times.

Although we could not suggest the best algo-
rithm for the capacitated vehicle routing problem, 
this research has a certain contribution in that the 
Voronoi diagram was firstly adopted to solve the 
capacitated vehicle routing problem. Based on this, 
this research can be extended in several ways. 
First, it may be needed to develop other algo-
rithms using the features of the Voronoi diagram 
for the capacitated vehicle routing problem. Second, 
the proximity information of the Voronoi diagram 
can be applied to other vehicle routing problems.
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