• Title/Summary/Keyword: neighbor selection

Search Result 130, Processing Time 0.027 seconds

Power Demand Forecasting in the DC Urban Railway Substation (직류 도시철도 변전소 수요전력 예측)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1608-1614
    • /
    • 2014
  • Power demand forecasting is an important factor of the peak management. This paper deals with the 15 minutes ahead load forecasting problem in a DC urban railway system. Since supplied power lines to trains are connected with parallel, the load characteristics are too complex and highly non-linear. The main idea of the proposed method for the 15 minutes ahead prediction is to use the daily load similarity accounting for the load nonlinearity. An Euclidean norm with weighted factors including loads of the neighbor substation is used for the similar load selection. The prediction value is determinated by the sum of the similar load and the correction value. The correction has applied the neural network model. The feasibility of the proposed method is exemplified through some simulations applied to the actual load data of Incheon subway system.

Neighbor Selection Methods Using Multi-Attribute Based Multi-Level Clustering (다중 속성 기반 다단계 클러스터링을 이용한 이웃 선정 방법)

  • Kim, Taek-Hun;Yang, Sung-Bong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.397-401
    • /
    • 2008
  • 추천시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것이 추천시스템의 예측의 질 향상을 위해서 필요하다. 본 논문에서는 다중 속성 정보를 기반으로 한 다단계 클러스터링을 통한 이웃선정 방법을 제안한다. 이 방법은 대규모 데이터 셋에서 탐색 공간을 줄이기 위해 클러스터링을 수행하여 적절한 이웃 고객들의 집합을 검색하여 추출한다. 이 때, 다중 속성 정보에 따라 단계적으로 클러스터링을 수행함으로써 보다 정제된 고객 집합을 구성할 수 있도록 한다. 본 논문에서는 고객 선호도와 위치 정보 및 아이템의 선호도와 위치 정보를 대표적인 속성 정보로 사용함으로써 모바일 환경에서 보다 정확한 추천이 이루어질 수 있도록 한다.

  • PDF

Empirical variogram for achieving the best valid variogram

  • Mahdi, Esam;Abuzaid, Ali H.;Atta, Abdu M.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.547-568
    • /
    • 2020
  • Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the variograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we traditionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN) showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The analysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in groundwater dataset.

Neighborhood Selection with Intrinsic Partitions (데이터 분포에 기반한 유사 군집 선택법)

  • Kim, Kye-Hyeon;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.428-432
    • /
    • 2007
  • We present a novel method for determining k nearest neighbors, which accurately recognizes the underlying clusters in a data set. To this end, we introduce the "tiling neighborhood" which is constructed by tiling a number of small local circles rather than a single circle, as existing neighborhood schemes do. Then we formulate the problem of determining the tiling neighborhood as a minimax optimization, leading to an efficient message passing algorithm. For several real data sets, our method outperformed the k-nearest neighbor method. The results suggest that our method can be an alternative to existing for general classification tasks, especially for data sets which have many missing values.

  • PDF

Treatment of Missing Data by Decomposition and Voting with Ordinal Data

  • Chun, Young-M.;Son, Hong-K.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.585-598
    • /
    • 2007
  • It is so difficult to get complete data when we conduct a questionaire in actuality. And we get inefficient results if we analyze statistical tests with ignoring missing values. Therefore, we use imputation methods which evaluate quality of data. This study proposes a imputation method by decomposition and voting with ordinal data. First, data are sorted by each variable. After that, imputation methods are used by each decomposition level. And the last step is selection of values with voting. The proposed method is evaluated by accuracy and RMSE. In conclusion, missing values are related to each variable, median imputation method using decomposition and voting is powerful.

  • PDF

L-PRS: A Location-based Personalized Recommender System

  • Kim, Taek-hun;Song, Jin-woo;Yang, Sung-bong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.113-117
    • /
    • 2003
  • As the wireless communication technology advances rapidly, a personalization technology can be incorporated with the mobile Internet environment, which is based on location-based services to support more accurate personalized services. A location-based personalized recommender system is one of the essential technologies of the location-based application services, and is also a crucial technology for the ubiquitous environment. In this paper we propose a framework of a location-based personalized recommender system for the mobile Internet environment. The proposed system consists of three modules the interface module, the neighbor selection module and the prediction and recommendation module. The proposed system incorporates the concept of the recommendation system in the Electronic Commerce along with that of the mobile devices for possible expansion of services on the mobile devices. Finally a service scenario for entertainment recommendation based on the proposed recommender system is described.

  • PDF

Global Optimization for Energy Efficient Resource Management by Game Based Distributed Learning in Internet of Things

  • Ju, ChunHua;Shao, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3771-3788
    • /
    • 2015
  • This paper studies the distributed energy efficient resource management in the Internet of Things (IoT). Wireless communication networks support the IoT without limitation of distance and location, which significantly impels its development. We study the communication channel and energy management in the wireless communication network supported IoT to improve the ability of connection, communication, share and collaboration, by using the game theory and distributed learning algorithm. First, we formulate an energy efficient neighbor collaborative game model and prove that the proposed game is an exact potential game. Second, we design a distributed energy efficient channel selection learning algorithm to obtain the global optimum in a distributed manner. We prove that the proposed algorithm will asymptotically converge to the global optimum with geometric speed. Finally, we make the simulations to verify the theoretic analysis and the performance of proposed algorithm.

An Improved Neighbor Selection Method for Recommender Systems based on Collaborative Filtering (협동적 필터링 기반 추천 시스템을 위한 향상된 이웃 선정 방법)

  • Kim, Taek-Hun;Yang, Sung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.453-456
    • /
    • 2004
  • 전자상거래에서 추천 시스템은 일반적으로 협동적 필터링이라는 정보 필터링 기술을 사용한다. 협동적 필터링 기술은 유사한 성향을 갖는 다른 고객들이 상품에 대해서 매긴 평가에 기반한다. 협동적 필터링이 유사 선호도를 갖는 이웃 고객들의 평가에 근거하기 때문에 고객에게 가장 적합한 유사 이웃들을 적절히 선정해 내는 것은 추천 시스템에서 예측의 질 향상을 위해 필요하다. 본 논문에서 우리는 ordered clustering을 이용하여 협동적 필터링을 위한 향상된 이웃선정 방법을 제안한다. 이 방법은 탐색 공간을 줄이기 위해 k-means 클러스터링 방법을 사용한다. 그리고 클러스터링에 의해 구성된 고객들에 대해서 threshold 값에 의해 보다 정제된 고객들을 최종 선정함으로써 고객에게 보다 의미 있는 적합한 고객이 최종적인 이웃으로 선정될 수 있도록 한다. 실험은 Compaq Computer Corporation에 의해 제공된 EachMovie 데이터 셋을 사용하였다. 실험 결과로 우리는 제안한 방법이 다른 방법보다 좋은 예측 정확도를 갖는 것을 확인할 수 있었다.

  • PDF

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

Intelligent recommendation method of intelligent tourism scenic spot route based on collaborative filtering

  • Liu Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1260-1272
    • /
    • 2024
  • This paper tackles the prevalent challenges faced by existing tourism route recommendation methods, including data sparsity, cold start, and low accuracy. To address these issues, a novel intelligent tourism route recommendation method based on collaborative filtering is introduced. The proposed method incorporates a series of key steps. Firstly, it calculates the interest level of users by analyzing the item attribute rating values. By leveraging this information, the method can effectively capture the preferences and interests of users. Additionally, a user attribute rating matrix is constructed by extracting implicit user behavior preferences, providing a comprehensive understanding of user preferences. Recognizing that user interests can evolve over time, a weight function is introduced to account for the possibility of interest shifting during product use. This weight function enhances the accuracy of recommendations by adapting to the changing preferences of users, improving the overall quality of the suggested tourism routes. The results demonstrate the significant advantages of the approach. Specifically, the proposed method successfully alleviates the problem of data sparsity, enhances neighbor selection, and generates tourism route recommendations that exhibit higher accuracy compared to existing methods.