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Abstract
We present a novel method for determining k nearest neighbors, which accurately recognizes the
underlying clusters in a data set. To this end, we introduce the “tiling neighborhood” which is
constructed by tiling a number of small local circles rather than a single circle, as existing
neighborhood schemes do. Then we formulate the problem of determining the tiling neighborhood as a
minimax optimization, feading to an efficient message passing algorithm. For several real data sets, our
method outperformed the k—nearest neighbor method. The results suggest that our method can be an
alternative to existing methods for general classification tasks, especially for data sets which have

many missing values.
1. Introduction

Finding similar elements of an item plays a key role in
most of the pattern recognition tasks such as
classification, clustering and information retrieval,
since a group of similar items generally forms a
meaningful pattern. The k—nearest neighbor method
(k-NN) [1] was proposed in this perspective and has
been widely used. Given an unlabeled test data point
X., the method first finds the k nearest points of x. in
the training set of labeled data points using a distance
metric. It then chooses the most frequent labet
occurring in the k nearest neighbors for the class label
of x. (majority voting). The success of k-NN depends
on how many neighbors are “actually similar” to the
test data point.

Various methods for global or local metric learning
have been developed [2-6] to discover a proper
distance measure for a given data set. However, they
have failed to achieve success in practical
applications because (1) a real data set generally
consists of several arbitrary-shaped partitions but
those methods cannot reflect such nonlinearity and
discontinuity: (2) those methods take too much time
compared to k—NN. In this paper, we develop a new
way of assigning points to a neighborhood.

We present a new way for neighborhood
construction which adequately captures and reflects
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the intrinsic partitions of a data set. To this end, we
introduce the “tiling neighborhood”. In contrast to k-
nearest neighborhood where a single circle determines
a neighborhood of a data, the tiling neighborhood is
constructed by tiling a number of small local circles
whose centers are referred to as tiling neighbors.

We illustrate the tiling neighborhood in detail,
including how to determine such neighborhoods, and
associated useful properties of it. Then, for
classification, we present an efficient message
passing algorithm which allows us to predict a class
label in the framework of the tiling neighborhood using
local computations. Numerical experiments with
several data sets, including a collaborative filtering
application, confirm the useful behavior of the
proposed method, compared to k—NN.

2. Theory and Algorithm

The main motivation of our method is to estimate
appropriate intrinsic clusters as neighborhoods, for
successful nearest neighborhood classification (Fig. 1).
However, k-NN may not accurately detect an intrinsic
partition of a data set. We present a new neighboring
method which preserves the intrinsic partition of a data
set. The intuitive idea is shown in Fig. 1. The desirable
neighborhood in Fig. 1 is constructed by tiling a number
of circles with diameter 8, following the tiling rule: A
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circle whose center corresponds to a data point must
conlact or overlap one or more other circles.

Tog!

Figure 1. (Left) The difference between a k-NN and our tiling
neighborhood. The solid circle represents a k-NN of a test data
point (green star). The intrinsic partition is not detected in this case,
leading to the misclassification. (Right) In contrast, the tiling
neighborhood exactly reconstructs the desirable result by joining a
number of small circles. In such a case, the test data point is
correctly classified.

Let us start from a circle initially attached to the
test point, and attach each circle by the rule until there
is no point that cannot be attached. Then, the set of
data points covered by circles can be seen as a
cluster whose size and shape are determined by . By
choosing the proper value of 8§, we can obtain the
correct neighborhood, denoted by the dotted ellipse in
both sides of Fig. 1.

Now we define the tiling neighborhood. Let V be a
finite set and d: VxV—R be a metric on V. Given veV
and 8 2 0, an element UEV is called a tiling neighbor
of v, denoted by u~v, if the following condition is
satisfied: There exists a series of elements w between
u and v such that

duw)<d for w~v

The inequality d(u,w) < & represents the tiling
rule such that two circles must contact or overlap each
other. The notation ~ is a relation (a subset of the
cartesian product VxV) on V and u~v means “u is a
tiling neighbor of v”. A tiling neighborhood of v,
denoted by T(v), is defined by a set of all eligible tiling
neighbors of v, i.e.,

TW)={u€V|u~v}

In general, finding a tiling neighborhood requires
the computational complexity O(|V|?), hence it is
much slower than finding a k—-NN. Now we formulate
the problem of selecting a tiling neighborhood as a
minimax optimization, and then develop an efficient
message passing algorithm. We denote by S(u,v) a
sequence from u to v, i.e., S(u,v) = (u,*-,v). It follows
from Sec. 2.1.3 that we can determine whether a
sequence S(u,v) is 8-bounded or not, by checking
whether there is no pair of adjacent elements
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(a,b)ES(u,v) such that d{a,b) > &. Clearly, if max
d(a,b} = & for any two adjacent elements a and b in
the sequence S{u,v), then the path S(u,v) is 8-
bounded. For a pair of elements u and v, there may be
several possible sequences from u to v. Among those
sequences, if the minimum value of max d(a,b) < 8,
there exists one or more &-bounded sequences so
that u~v is satisfied. Consequently, if we compute the
minimax distance between u and v as
dpm(u,v) = min S(u,v) { max (a,b) =S(u,v) d(a,b) }

for all ueV, then we can find a tiling neighborhood of
v as {u | dmmluyv) S 8} The corresponding
sequence(s) is called a minimax path and a tree T is
called a minimax spanning tree if the paths between all
pairs u,v&V are minimax paths.

Since there are enormously many possible
seguences between a pair, computing the minimax
distance seems to be a very complicated task.
However, a minimum spanning tree (MST) is also a
minimax spanning tree [7]. That is, every path
between two nodes u and v in an MST, denoted by
M(u,v), is also a minimax path between them. Hence,
we can obtain the minimax distance d,m between any
pair u,vEV by simply computing

dpum(u,v) = max (a,b) EM(u,v) d(a,b).

Let X be a set of training points {xy, -, xy} and x.
be a test point. To find a tiling neighborhood of x., the
minimax distance dym{X;,x.) should be computed for all
xE€X. Clearly, we can easily obtain them by
constructing an MST of the set XU{x.} and then
computing them. However, constructing the MST takes
at least O(N®) time, so this approach is too inefficient
to be practically used. Now we derive a formula for
computing dmm(x;,X.) without constructing an MST
every time. There are N types of paths between x; and
X« such that (x,=,X1,%), 0, X2, Xa), =0 (5, Xn, Xe)
All paths S(x;,x.) belong to one of the types. Hence,
there are N candidates for the minimax path between
X and X. such that (M{x,x:),x.), (M{x,xz),x.), -,
(M(x;,xy),x.), and the minimax distance dmm(X;,X.) is

drmm{Ts, 24} min max [dmm(m.zj), d{xj, 2,) ]

min [d(.ti,.t'), ﬂ?mm [dmm(zhlj)xd('ljva ] ]~

where the second inequality is derived from the fact
that max [dmm{x,x:}, d(x,x*)} is simply d(x,x*) forj=i.

Now we develop a message passing algorithm
that determines a tiling neighborhood, when a
minimum spanning tree of v={xy,"--,xx} is given. Let ¢
be a set of edges on the MST and W; be an index set
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such that {j | (i.)€e}. Then, minimax distances
between x. and {x;,---,xy} can be efficiently computed
on the MST by the following message passing
algorithm:

m; = max [d(m,,:tjj, min [d(:z,,x,), min mkt] ]. Y1, 5} € &,
keEN—{3}
(X, 8,) = min [d(a:.,:t.), min mp; }, v, e V.
kEN:

The algorithm can obtain all minimax distances
and the tiling neighborhood of x. in O(N) time. It is
equal to the time complexity of the k—=NN.

3. Numerical Experiments

We compared the classification performance between
a k-NN and our tiling neighborhood using five UC/
data sets and the MovieLens data set. To predict a
class label of a test data point, we used the average
rating and the majority voting. The performance is
measured by the average absolute error and the
average zero—one error rate.

We used five data sets taken from UCI Machine
Learning Repository': Iris, Sonar, Glass, Vowel, and
Segmentation. Iris consists of 100 4-gimensional data
points. Sonar consists of 208 60-dimensional data
points. Glass consists of 214 9-dimensional data
points. Vowe! consists of 528 10-dimensional data
points. Segmentation consists of 2310 19-dimensional
data points. We also performed experiments with the
MovielLens recommend system where the data set is
collected by the Grouplens Research Project?. The
data set consists of 100,000 ratings (scaled from 1 to
5) from 943 users on 1682 movies.

For Iris, Sonar, and Glass, we performed N
experiments where N is the number of data points. For
the i-th experiment, we select the i-th data point as a
test point, and the remaining data points as a training
set.

For Vowel, we perform 10 experiments by
selecting 200 data points randomly as a training data
set, and the remaining data points as a test set.

For Segmentation, we divide the whole data into 10
subsets and then perform 10 experiments such that one
subset as a test set and the others as a training set.

For Movielens, we selected 4 groups of uses as
the test sets according to the number of ratings of

! UCI Machine Learning Repository:
http!//www.ics.uci.edu/~mlearn/MLRepository.html
2 The GroupLens Research Project: http://www.grouplens.org
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each user: users who have rated (1) 150~500 movies,
(2) 75~250, (3) 45~150, and (4) 20~50. For each
group, we randomly selected 10, 30, 50, or 100 users
respectively as the test cases. For each user in that
group, we randomly selected 100, 50, 30, or 10
ratings respectively as the observed features, and the
other ratings were used for prediction. To predict the
rating, we define the distance between two users u
and v as the average difference of ratings such that
dluv) = Yalr(u,m)=riv,m)|/Ny, where r(u,m) is the
rating on the movie m given by the user u, and Ny, is
the number of movies rated by both u and v.

For all data sets, we used majority voting, i.e., y.
is labeled as a majority of y;s in T(x.). For movie lens,
we also used the average rating, i.e., v. = ¥ v/ | T(xJ)1,
where y. is the predicted rating, y; is the class label of
x;, and T(x.) is a tiling neighborhood of a test point x..
The average rating is used only in the experiments on
MovieLens, because it is appropriate for ordinal
labeling (e.g. ratings) but not for nominal labeling.

For all data sets, we used the average zero-one
error rate, i.e., (the number of misclassified test
points)/M. For Movielens, we also used the average
absolute error which the average deviation of the
prediction from the true target, i.e., ¥ ly. “= y7[/M for
a set of M test points. The average absolute error
measure is used only in the experiments on MovielLens,
since the measure is appropriate for user—preference
prediction tasks but not for common classification
tasks.

4. Results

Our method outperformed k-NN for all UCI data sets
(Table 1): For Iris, the average error rate of our method
was 0.2%P? lower than that of k-NN. For Sonar, it was
0.5%P lower. For Glass, it was 0.9%P lower. For Vowel,
it was about 2%P lower. For Segmentation, it was
0.5%P lower.

Our method outperformed k~NN for MovielLens, for
all groups and rating methods, with respect to both
absolute error (Table 2) and zero~one error rate (Table 3).
MovielLens is a very sparse data set. For 943 users
and 1,682 movies, there are 1,586,126 possible
combinations of ratings, but MovieLens provides only
100,000 ratings. That is, about 94% of values are
unknown. For users who give many ratings (Group 1),

3 Percentage point, the arithmetic difference of two percentages.
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Table 1. Zero-one classification error rate (%) for UCI data sets. For

Iris, Sonar, and Glass, n = 1; For Vowel and Segmentation, means
and standard deviations (n = 10) of classification error rates are
given.
Method Data Set
Iis  Sonar  Glass Vowel Segment
Tling 0.4 12.0 271 9.72 £ 0.89 3.1+ 091
k-NN 0.6 12.5 28.0 11.8 £ 2.56 3.6+1.27

Table 2. Absolute error for Movielens. Means and standard
deviations (n = # of users in each test group) are given. Users in
Group 1 rate 150~500 movies, in Group 2 rate 75~250 movies, in
Group 3 rate 45~150 movies, in Group 4 rate 20~50 movies.

Rating Method

Average Rating Majority Voting
Tiling k-NN Tiling k-NN
Group1 0.73+0.85 0.78 + 0.89 0.76 £ 0.81  0.81 + 0.83
Group2 0.73+0.77 0.77 £0.77 0.7 £0.79  0.84 + 0.81
Group3 074074 0.80+0.79 078 £0.79  0.84 + 0.84
Group4 0.86 + 0.89 0.96 + 0.95 0.93 £0.87 1.01£0.095
Mean  0.7740.81 0.83+0.85 0.82+0.82  0.88+0.88

Table 3. Zero—one error rate (%) for MovieLens. Means and standard
deviations (n = # of users in each test group) are given.

Rating Method

Average Rating Majority Voting
Tiling k~NN Tiling k-NN
Group1 55547 583 +5.1 57859 60.1 £ 5.0
Group2 58213.9 61.1+48 60.6 + 3.1 62.5 £ 3.7
Group3 59517.3 61.4+81 59.6 + 6.5 61.1£6.2
Group4 628+ 121 665+ 138 65.9+10.1 673+ 11.2
Mean 59.0£7.0  61.8+8.0 61.0+6.4 62.8+6.5

distances between the users and the other users are
generally reliable, because there are plenty of
observed features used to compute the distances. On
the other hand, for users who give few ratings (Group
4), distances between the users and the other users
are generally not reliable. However, our method
achieved more improvement (the results of k-NN as
baselines) in Group 4 than in Group 1, except for
zero—-one error rate with majority voting: For absolute
error with average rating, the average error of our
method was 0.10 smaller than that of k-NN in Group
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4, while 0.05 smaller in Group 1. For absolute error
with majority voting, it was 0.08 smaller in Group 4,
while it was 0.05 smaller in Group 1. For zero-one
error rate with average rating, the average error rate
was 3.7%P smaller in Group 4, and 2.8%P smaller in
Group 1.

5. Discussion

k—-NN, the most popular neighboring method up to
now, is incapable of detecting intrinsic partitions of a
data set. Such incapability makes k—NN choose many
irrelevant data points as neighbors of a test data point,
and thus brings the poor classification performance.
To remedy this problem, we proposed the tiling
neighborhood method which accurately detects the
intrinsic partitions. In this section, we discuss the
resuits in Section 4 to show that our method can
effectively solve the problem.

For all UCI data sets, our method obtained better
results than k-NN. In general, most of the
misclassifications occur at the boundary between two
classes because nearest neighbors of a query include
many irrelevant data points. On the other hand, our
method is more robust than the existing classification
methods because it retrieves the appropriate intrinsic
cluster by (tiling) neighbors whether the query is near
the boundary or not. Hence, our method is better at
general classification tasks than the existing methods
including k—NN.

For MovielLens, our method improved grouping
more for users who give fewer ratings than for groups
which gave more ratings. Since we define the distance
between two users as the average: difference of their
ratings, such a group tends to yield many unreliable
test-training distances d{x.,x) and thus many
misclassifications. However, our method uses minimax
distances dmm(x,X.) which consider not only test-
training distances d(x.,x;}, but also training-training
distances d(x,x;) to compute them. Hence, our
method is especially useful for data sets having many
missing values because minimax distances can be

reliable even though most of the test-training
distances are unreliable.
6. Conclusion

We have proposed a novel approach to constructing a
neighborhood that consists of a number of circles that
overlap or contact each other. This approach identified
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a tiling neighborhood that preserved the intrinsic
partition of a data set by satisfying the equivalence
relation. For implementation, we derived a message
passing algorithm whose computational complexity is
compared to k—NN. Experiments with real-world data
sets showed the usefulness of our method for
classification tasks, especially with a data set having
many missing values.
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