• 제목/요약/키워드: negative-sequence current

검색결과 87건 처리시간 0.023초

An Integrated Compensation Algorithm for PCC Voltage Fluctuation and Unbalance with Variable Limit of Positive and Negative Sequence Currents

  • Im, Ji-Hoon;Song, Seung-Ho;Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.751-760
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation algorithm using a current limitation strategy for use in distributed generation (DG). The proposed strategy maintains the PCC voltage by prioritizing currents when an output current reference is larger than the current capacity of the power condition system (PCS) of the DG. With this strategy, the DG outputs the active current, reactive current, and the negative sequence current. The DG uses the reactive current for maintaining the PCC voltage within a normal range; the negative sequence current is used for reducing the PCC voltage unbalance. The proposed method was verified using PSIM simulation and experimental results.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

발전기의 불평형 검출을 위한 디지털 역상 계전 알고리즘 (Digital Negative Sequence Relay Algorithm for Detection of Unbalanced State in a Generator)

  • 박철원
    • 전기학회논문지P
    • /
    • 제62권4호
    • /
    • pp.198-203
    • /
    • 2013
  • There are conditions that can be unbalanced three phase currents in a large generator by untransposed lines, unbalanced loads, unsymmetrical faults, and open phases. The unbalanced conditions can producing negative sequence components of current that induce two times frequence current in the surface of the rotor, the retaining rings, the slot wedges in the field windings. These rotor currents make the rotor rapidly overheat, so the rotor can cause substantial damage in a very short time. This paper presents the digital negative sequence relay algorithm for unbalanced protection in a generator. The proposed algorithm was tested by using collected current signals on PSCAD/EMTDC considering a hydro turbine based generator control system. It can be seen that the proposed relaying by negative sequence current is useful for detection of unbalanced state of large generator.

역상분 전류 주입을 적용한 3상 인버터 기반 BESS의 단독 운전 검출 방법 (Anti-islanding Detection Method for BESS Based on 3 Phase Inverter Using Negative-Sequence Current Injection)

  • 신은석;김현준;한병문
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1315-1322
    • /
    • 2015
  • This paper proposes an active islanding detection method for the BESS (Battery Energy Storage System) with 3-phase inverter which is connected to the AC grid. The proposed method adopts the DDSRF (Decoupled Double Synchronous Reference Frame) PLL (Phase Locked-Loop) so that the independent control of positive-sequence and negative-sequence current is successfully carried out using the detected phase angle information. The islanding state can be detected by sensing the variation of negative-sequence voltage at the PCC (Point of Common Connection) due to the injection of 2-3% negative-sequence current from the BESS. The proposed method provides a secure and rapid detection under the variation of negative-sequence voltage due to the sag and swell. The feasibility of proposed method was verified by computer simulations with PSCAD/EMTDC and experimental analyses with 5kW hardware prototype for the benchmark circuit of islanding detection suggested by IEEE 1547 and UL1741. The proposed method would be applicable for the secure detection of islanding state in the grid-tied Microgrid.

3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법 (Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter)

  • 박찬솔;송승호;임지훈
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

대칭분 전압 단위 벡터를 이용한 송전선로 보호용 고장상 선택 알고리즘 (Fault Phase Selection Algorithm using Unit Vector of Sequence Voltages for Transmission Line Protection)

  • 이명수;이재규;김수남;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.460-466
    • /
    • 2002
  • A reliable fault phase selection algorithm plays a very important role in transmission line protection, Particularly in Extra High Voltage (EHV) networks. The conventional fault phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and select the fault phase in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can select the accurately fault phase using the sum of unit vectors which are calculated by positive-sequence voltage and negative-sequence voltage.

전기로용 다단 H-브릿지 STATCOM의 전류제어 (Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces)

  • 권병기;정승기;김태형;김윤현
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.

불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어 (Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load)

  • 권병기;정승기;김태형
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Control of Circulating Current in Modular Multilevel Converter under Unbalanced Voltage using Proportional-Resonant Controller

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.143-144
    • /
    • 2016
  • The circulating current control within the phase legs is one of the main control objectives in a modular multilevel converter (MMC) under different operating conditions. This paper proposes a control strategy of circulating currents in the MMC under unbalanced voltage by using a proportional-resonant (PR) controller. Under the unbalanced voltage, the circulating currents in the MMC consists of three components such as positive-sequence, negative-sequence, and zero-sequence circulating currents. With the PR controller, all components of the circulating current will be directly controlled in the stationary reference frame without decomposing into positive- and negative-sequence components. Thus, the ripples in the circulating currents and the DC current are suppressed under the unbalanced voltage. The effectiveness of the proposed method is verified by simulation results based on PSCAD/EMTDC simulation program.

  • PDF

대칭분 전압을 이용한 송전선로 보호용 고장상 선택 알고리즘 (Phase Selection Algorithm using Sequence Voltages for Transmission Line Protection)

  • 이명수;김수남;이재규;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.124-126
    • /
    • 2001
  • A reliable fault type identification (phase selection) plays a very important role in transmission line protection, particularly in Extra High Voltage(EHV) networks. The conventional fault type identification algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and identify the fault type in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can identify the accurately fault type using the sum of unit vectors which are calculated by positive-sequence votage and negative-sequence voltage.

  • PDF