• 제목/요약/키워드: negative sequence voltage injection

검색결과 7건 처리시간 0.022초

역상분 전압 주입을 이용한 태양광 인버터의 단독 운전 검출 (Anti-islanding Detection of Photovoltaic Inverter Based on Negative Sequence Voltage Injection to Grid)

  • 김병헌;박용순;설승기;김우철;이현영
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.546-552
    • /
    • 2012
  • This paper presents an active anti-islanding detection method using negative sequence voltage injection to the grid through a three-phase photovoltaic inverters. Because islanding operation mode can cause a variety of problems, the islanding detection of grid-connected photovoltaic inverter is the mandatory feature. The islanding mode is detected by measuring the magnitude of negative sequence impedance calculated by the negative sequence voltage and current at the point of common coupling. Simulation and experimental test are performed to verify the effectiveness of the proposed method which can detect the islanding mode in the specified time. The test has been done in accordance with the condition on IEEE Std 929-2000.

3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법 (Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter)

  • 박찬솔;송승호;임지훈
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

역상분 전류 주입을 적용한 3상 인버터 기반 BESS의 단독 운전 검출 방법 (Anti-islanding Detection Method for BESS Based on 3 Phase Inverter Using Negative-Sequence Current Injection)

  • 신은석;김현준;한병문
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1315-1322
    • /
    • 2015
  • This paper proposes an active islanding detection method for the BESS (Battery Energy Storage System) with 3-phase inverter which is connected to the AC grid. The proposed method adopts the DDSRF (Decoupled Double Synchronous Reference Frame) PLL (Phase Locked-Loop) so that the independent control of positive-sequence and negative-sequence current is successfully carried out using the detected phase angle information. The islanding state can be detected by sensing the variation of negative-sequence voltage at the PCC (Point of Common Connection) due to the injection of 2-3% negative-sequence current from the BESS. The proposed method provides a secure and rapid detection under the variation of negative-sequence voltage due to the sag and swell. The feasibility of proposed method was verified by computer simulations with PSCAD/EMTDC and experimental analyses with 5kW hardware prototype for the benchmark circuit of islanding detection suggested by IEEE 1547 and UL1741. The proposed method would be applicable for the secure detection of islanding state in the grid-tied Microgrid.

Flexible Voltage Support Control with Imbalance Mitigation Capability for Inverter-Based Distributed Generation Power Plants under Grid Faults

  • Wang, Yuewu;Yang, Ping;Xu, Zhirong
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1551-1564
    • /
    • 2016
  • The high penetration level of inverter-based distributed generation (DG) power plants is challenging the low-voltage ride-through requirements, especially under unbalanced voltage sags. Recently, a flexible injection of both positive- (PS) and negative-sequence (NS) reactive currents has been suggested for the next generation of grid codes. This can enhance the ancillary services for voltage support at the point of common coupling (PCC). In light of this, considering distant grid faults that occur in a mainly inductive grid, this paper proposes a complete voltage support control scheme for the interface inverters of medium or high-rated DG power plants. The first contribution is the development of a reactive current reference generator combining PS and NS, with a feature to increase the PS voltage and simultaneously decrease the NS voltage, to mitigate voltage imbalance. The second contribution is the design of a voltage support control loop with two flexible PCC voltage set points, which can ensure continuous operation within the limits required in grid codes. In addition, a current saturation strategy is also considered for deep voltage sags to avoid overcurrent protection. Finally, simulation and experimental results are presented to validate the effectiveness of the proposed control scheme.

Control Strategy Compensating for Unbalanced Grid Voltage Through Negative Sequence Current Injection in PMSG Wind Turbines

  • Kang, Jayoon;Park, Yonggyun;Suh, Yongsug;Jung, Byoungchang;Oh, Juhwan;Kim, Jeongjoong;Choi, Youngjoon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2013
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

역상분 전압 주입을 이용한 태양광 인버터의 단독 운전 검출 (Anti-islanding Detection of Photovoltaic Inverter Based on Negative Sequence Voltage Injection to Grid)

  • 김병헌;박용순;설승기;김우철;이현영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 추계학술대회
    • /
    • pp.57-58
    • /
    • 2011
  • 본 논문에서는 3상 태양광 인버터의 단독 운전 검출 방법을 제안한다. 국내외 규정에서 10MW 미만의 태양광 인버터는 제한된 시간 내에 단독 운전을 검출하여 계통에 에너지 공급을 중단할 것을 요구한다. 제안된 단독 운전 검출 방법은 역상분 전압 주입 후 접속점(PCC, Point of Common Coupling)에서 관측되는 역상분 임피던스의 크기 변화에 근거한다. 제안된 검출 방법의 원리와 구현 기법을 제시하고, IEEE Std. 929-2000을 기준으로 유효성을 검증한다. 제안된 방법은 국내외 규정에서 요구하는 검출 시간 이내에 단독 운전을 검출할 수 있고, 단독 운전을 계통 지락 사고와 구별할 수 있으므로 계통 연계시 요구되는 그리드 코드(Grid code)에 대한 대응도 가능하다.

  • PDF

Shunt Active Filter for Multi-Level Inverters Using DDSRF with State Delay Controller

  • Rajesh, C.R.;Umayal, S.P.
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.863-870
    • /
    • 2018
  • The traditional power control theories for the harmonic reduction methods in multilevel inverters are found to be unreliable under unbalanced load conditions. The unreliability in harmonic mitigation is caused by voltage fluctuations, non-linear loads, the use of power switches, etc. In general, the harmonics are reduced by filters. However, such devices are an expensive way to provide a smooth and fast response to secure power systems during dynamic conditions. Hence, the Decoupled Double Synchronous Reference Frame (DDSRF) theory combined with a State Delay Controller (SDC) is proposed to achieve a harmonic reduction in power systems. The DDSRF produces a sinusoidal harmonic that is the opposite of the load harmonic. Then, it injects this harmonic into power systems, which reduces the effect of harmonics. The SDC is used to reduce the delay between the compensation time for power injection and the generation of a reference signal. The proposed technique has been simulated using MATLAB and its reliability has been verified experimentally under unbalanced conditions.