• Title/Summary/Keyword: negative poisson's ratio

Search Result 30, Processing Time 0.023 seconds

A Wire-Woven Kagome Transformed to have a Negative Poisson's Ratio (음의 푸아송비를 갖도록 변환된 와이어 직조 Kagome)

  • Kang, Dae Seung;Han, Seung Chul;Park, Jong Woo;Nguyen, Dang Ban;Kang, Kiju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.827-833
    • /
    • 2016
  • Wire-woven Kagome is a kind of Periodic Cellular Metal, which is known to have high strength, stiffness for its weight, and potential for mass production. In this work, we developed a new structure that mimics ${\alpha}$-cristobalite. First, an ordinary wire-woven Kagome was fabricated using metallic wires, and the tetrahedral cells were then filled with metal balls and epoxy. The wire-woven Kagome was transformed to have a negative Poisson's ratio by carrying out a specified amount of initial deformation. The fabrication possibility and kinematic behavior were checked by using FEA simulation. Finally, the mechanical properties were measured using compressive tests.

빔 요소를 이용한 리엔트런트 오그제틱 구조에 대한 전산구조설계

  • Sin, Jae-Gwang
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.197-200
    • /
    • 2015
  • 푸아송비(poisson's ratio)는 종방향 변형률에 대한 횡방향 변형률의 비로, 우리 주위 대부분의 재료들은 양의 푸아송비를 지닌다. 그러나 재료가 특정한 격자구조를 이루도록 설계할 경우 구성물질이 양의 푸아송비를 가지더라도 거시적으로는 음의 푸아송비를 구현할 수 있으며, 이러한 극한물성물질(metamaterial)을 오그제틱 물질(auxetic material)이라고 부른다. 이전까지 오그제틱 물질을 구현하기 위한 많은 메커니즘들이 개발되고 역학적, 수치적으로 해석되어 왔다. 이 논문에서는 가장 대표적인 오그제틱 구조인 리엔트런트(re-entrant) 오그제틱 구조를 빔 구조물로 모델링하여 유한요소해석을 수행하고 주요 설계 변수인 리엔트런트 각에 따라서 푸아송비와 유효 탄성계수가 어떻게 변화하는지 확인하였다.

  • PDF

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries (소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

Characterization of 3D Printed Wrist Brace with Various Tilting Angles of Re-entrant Pattern Using Thermoplastic Elastomer

  • Ye-Eun Park;Hyejin Lee;Imjoo Jung;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1074-1087
    • /
    • 2022
  • This study reports an optimization of a 3D printed wrist brace (WB) for various tilting angles (0°, 45°, 90°) of the re-entrant (RE) pattern and thickness (2 mm, 4 mm) using thermoplastic polyurethane (TPU) filaments and thermoplastic elastomer (TPE) filaments. The actual printing time, weight, Poisson's ratio, and tensile property of the manufactured samples were analyzed. The results confirmed that the actual printing time and weight increased with increasing thickness, regardless of the filament type. All tilting angles of the WB showed a negative Poisson's ratio (NPR), the largest of which appeared at 90°. The results of the tensile property analysis showed that a 90° tilting angle also had the largest value of elongation and stress. From these results, we conclude that the most suitable wrist brace is one in which the actual printing time is low, the weight is minimized to a thickness of 2 mm, and the tilting angle of the RE pattern is 90° for good shock absorption. The choice of filaments may be decided upon according to the user's preference, since the TPU is stiff and the TPE is elastic.

An Analysis on the Determinants of Employed Labour Quantity in the Fishing Industry (어가의 고용량 결정요인 분석)

  • Kim, Tae-Hyun;Park, Cheol-Hyung;Nam, Jongoh
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.545-567
    • /
    • 2018
  • This study applied and compared Poisson model, negative binomial model, zero inflated Poisson model, and zero inflated negative binomial model to estimate determinants of employed labour quantity. To estimate each of models, this study used fisheries census data which were obtained at microdata integrated service running by Statistics Korea. The study selected zero inflated negative binomial model according to the Vuong test and Likelihood-ratio test. In addition, the study estimated fishing village's practical changes on employed labour quantity as analyzing changes from 2010 to 2015. The results showed that the household with fishing vessels and high selling price had a significant effect on decrease of the labour quantities. Meanwhile, the longer work experience of the household, the more significant the increase in the labour quantities. In conclusion, this study presented that capitalized fishing household and the acceleration of aging had a significant impact on the change in the labour quantities.

리엔트런트 패널의 전면볼록성에 대한 정량적 해석

  • Heo, Jeong-Min;Lee, Ji-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.228-233
    • /
    • 2016
  • Auxetic material is a material which has negative Poisson's ratio(NPR). Auxetic material shows some distinctive property like high energy absorbing property and high shear modulus. Among these, synclastic curvature is very interesting characteristic. When synclastic-curvature-material bends, it changes its shape like dome, contrary to non-auxetic material which changes its shape like saddle(anticlastic). This distinctive property could make it easy to manufacture curved structure like nose cone or wing panel in aerospace engineering. In this study, we studied a quantitative analysis about synclastic curvature of re-entrant panel with finite element model. We suggested a concept 'Degree of Synclasticity(DOS)', which means a ratio of curvature of load-direction and load-orthogonal direction. We studied the variation of DOS with two factor, unit cell inner angle(${\theta}$) and load position angle(${\phi}$). DOS decreases as ${\theta}$ increases because the unit cell goes out of auxetic-shape. As ${\phi}$ varies, DOS changes in a large range. So proper optimization of ${\phi}$ would be needed for application.

  • PDF

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.

Mechanical Properties of 3D Printed Re-entrant Pattern/Neoprene Composite Textile by Pattern Tilting Angle of Pattern (3D 프린팅 Auxetic Re-entrant 패턴의 기울기 각도에 따른 네오프렌 복합 직물의 역학적 특성에 관한 연구)

  • Kim, Hyelim;Kabir, Shahbaj;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.1
    • /
    • pp.106-122
    • /
    • 2021
  • This study confirmed the mechanical properties of an auxetic re-entrant pattern prepared using 3D printing technology and its composite fabric with neoprene for the production of functional auxetic patterns/textiles for safety shoes. Samples were prepared by the tilt angle of a re-entrant pattern of 0°, 30°, 45°, 60° and 90°, and then analyzed using Poisson's ratio, bending, compression, and tensile properties. A 3D printed auxetic re-entrant pattern (3DP-RE) and its composite fabric (3DP-RE/NP) showed a negative Poisson's ratio in all tilting angles that indicated auxetic properties. The results of the bending property shown that strength of 3DP-RE/NP was 1.5 times lower than NP, but the strain improved 2.0 times. It was confirmed that the deformation of 3DP-RE/NP is possible with a low load. Each sample type of compression behavior indicated similar regardless of the tilting angles; in addition, the compression toughness of 3DP-RE/NP increased 1.2 times compared with NP. In the case of tensile properties, 3DP-RE and 3DP-RE/NP were affected by the tilting angle, samples with 90° (the opposite of load direction) showed best tensile property and toughness. 3DP-RE/NP indicated improved bending, compression, and tensile properties.