• Title/Summary/Keyword: needle litter

Search Result 31, Processing Time 0.021 seconds

Carbon and Nitrogen Inputs by Litterfall of Chamaecyparis obtusa Planted in Pine Wilt Disease-disturbed Forests (소나무재선충병 피해지에 식재된 편백의 낙엽·낙지에 의한 탄소 및 질소 유입량)

  • Kang, Hyeon Cheol;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, carbon (C) and nitrogen (N) inputs by the litterfall of Japanese cypress (Chamaecyparis obtusa Endlicher) planted in pine wilt disease-disturbed forests were determined. The study sites were located in Sacheon-si, Gyeongsangnam-do. Eight plots under two regeneration sites (DR: four plots of C. obtusa planted under slightly disturbed Pinus thunbergii stands; CR: four plots of C. obtusa planted following the clear-cutting of severely disturbed pine stands) were established to collect litterfall from December 2018 to December 2019. The growth of diameter at breast height (DBH) was significantly higher in the CR treatment (12.10 cm) than that in the DR treatment (9.42 cm). C and N concentrations and the C/N ratio in C. obtusa leaf litter did not differ significantly between the two regeneration treatments, but the C/N ratio was significantly lower in the leaf litter collected in October (93) relative to that collected in December (143). The C concentration of litterfall components was significantly higher in C. obtusa leaf litter and in P. thunbergii needle litter than in broadleaved and miscellaneous litter, whereas the N concentration in broadleaved and miscellaneous litter was significantly higher than that in the leaf litter of C. obtusa and in branch litter. Thus, the C/N ratio was significantly higher in C. obtusa leaf litter and branch litter compared with that in miscellaneous and broadleaved litter. Respective C and N inputs by leaf litter were 773 kg C ha-1 yr-1 and 6.95 kg N ha-1 yr-1 for the CR treatments, and 78 kg C ha-1 yr-1 and 0.70 kg N ha-1 yr-1 for the DR treatment. Total C and N inputs were higher for the DR treatment (3,765 kg C ha-1 yr-1 and 47.6 kg N ha-1 yr-1, respectively) than for the CR treatment (1,290 kg C ha-1 yr-1 and 17.2 kg N ha-1 yr-1, respectively). These results indicate that, for C. obtusa, the DBH growth in the CR treatment was superior to that in the DR treatment, but the C and N inputs by litterfall were considerably reduced in CR treatments.

Quantifying Litterfall Input from the Stand Parameters of Korean Red Pine (Pinus densiflora S. et Z.) Stands in Gyeongnam Province

  • Kim, Choonsig;Baek, Gyeongwon;Choi, Byeonggil;Baek, Gyeongrin;Kim, Hojin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.569-576
    • /
    • 2021
  • This study developed an estimation model for litterfall input using the stand parameters (basal area, stand density, mean DBH, and carbon stocks of the aboveground tree biomass) collected from the Korean red pine (Pinus densiflora S. et Z.) stands of seven regions in Gyeongsangnam-do. The mean annual litterfall was 2,779 kg ha-1 year-1 for needles, 883 kg ha-1 year-1 for miscellaneous, 611 kg ha-1 year-1 for broadleaved, 513 kg ha-1 year-1 for branches, and 340 kg ha-1 year-1 for bark litter. The mean annual total litterfall was 5,051 kg ha-1 year-1. Litterfall components were significantly correlated with stand parameters, except for broadleaved litter. A stronger correlation was observed between the carbon stock of the aboveground tree biomass and all the litterfall components compared with the other stand variables. The allometric equations for all the litterfall components were significant (P < 0.05), with the stand parameters accounting for 5%-43% and 8%-42% of the variation in the needle litter and total litterfall, respectively. The results indicated that the annual litterfall inputs of the Korean red pine stands on a regional scale can be effectively estimated by allometric equations using the basal area and carbon stocks of the aboveground tree biomass.

Mass Loss and Nutrients Dynamics During the Litter Decomposition in Kwangnung Experimental Forest (광릉(光陵) 시험림(試驗林) 내(內)의 임분별(林分別) 낙엽(落葉)의 분해(分解)와 분해과정(分解過程)에 따른 영양염류(營養鹽類)의 변화(變化))

  • You, Young-Han;Namgung, Jeong;Lee, Yun-Young;Kim, Jeong-Hee;Lee, Jong-Young;Mun, Hyeong-Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • Mass loss and dynamics of mineral nutrient during decomposition of deciduous leaves and 3 species of needles were investigated for 38 months from October in 1992 to November in 1995 in Kwangneung, Korea. After 38 months, the remaining mass of deciduous leaves, Pinus koraiensis, Pinus rigida and Abies holophylla was 16.2%, 29.8%, 33.5% and 53.9%, respectively. The decay rate (k) of deciduous leaves, Pinus koraiensis, Pinus rigida and Abies holophylla was 0.61, 0.40, 0.37, $0.21yr^{-1}$, respectively. The lowest decay rate in fir needle might be, in part, due to low N concentration. N concentration of the decomposing litter increased during the experimental period except for P. rigida. Deciduous leaves showed a short immobilization period during the early stage of decomposition, and big-cone pine and pitch pine had no immobilization period. However, there was no net N mineralization in fir litter. P increased during the experimental period for all litter. Except for deciduous leaves, there was no net mineralization period. In case of deciduous leaves, however, remaining P after 38 months was 53% of the initial P capital. Remaining cations of the decomposing litter after 38 months were lower than those of initial contents.

  • PDF

The Decay Map and Turnover Cycles of Litters in Korea (한국의 낙엽분해도 및 년간 무기양분 순환에 관한 연구)

  • Chang, Nam-Kee;Sung-Kyu Lee;Bok-Seon Lee;Heu-Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.4
    • /
    • pp.183-193
    • /
    • 1987
  • An investigation was performed to draw the decy map of litters on the floors of pine and oak forests in Korea and to reveal the turnover cycles of N, P, K, Ca and Mg in litters. Isodecay constant lines of litter organic matter, which are depended upon the altitude, latitude and orientation, were drawn on the Korean map. The decay constants of organic matter of litters were higher in the broadleaf tree forests than in the needleleaf tree forests, and in the grasslands than in the forests. The amount of mineral nutrients such as N, P, K, Ca and Mg returned annually to soils is higher in the broadleaf tree forests than in the needle leaf tree forests, and highest in the Quercus mongolica forest of the forests.

  • PDF

Biological Activity of Extracts from Zea mays L. and Pinus densiflora L. (옥수수(Zea mays L.)와 소나무(Pinus densiflora L.) 추출물의 생물학적 활성)

  • ;Soul Chun;Nick E. Christians
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.4
    • /
    • pp.203-210
    • /
    • 1998
  • Environmental concerns arising from synthetic herbicides in plant management systems have led to an interest in plant-derived compounds as natural herbicides. Inhibitory effects of compounds extracted with 50% methanol from corn (Zea mays L.) and pine (Pinus densiflora L.) were evaluated on large crabgrass (Digitaria sanguinalis (L.) Scop.), annual bluegrass Poa annua L.), radish (Raphanus sativus L.), and perennial ryegrass (Lolium perenne L.) The aqueous extracts inhibited seed germination and had postemergence activity on the four species. The stability of biological activity of corn grain, stover, and root extracts was not affected by heating to $135^{\circ}C$ or freezing/thawing treatments when applied at levels above 0.25kg m(sup)-2 based on dry weights of powders before extraction. Heating reduced the activity of pine litter and bark extracts at all levels except the highest application level but had little effect on pine needle extracts.

  • PDF

Estimation of Forest Soil Carbon Stocks with Yasso using a Dendrochronological Approach (연륜연대학적 접근을 이용한 Yasso 모델의 산림토양탄소 저장량 추정)

  • Lee, Ah Reum;Noh, Nam Jin;Yoon, Tae Kyung;Lee, Sue Kyoung;Seo, Kyung Won;Lee, Woo-Kyun;Cho, Yongsung;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.791-798
    • /
    • 2009
  • The role of forest and soil carbon under global climate change is getting important as a carbon sink and it is necessary to research on applicable forest models as well as in the field for a study of these dynamics. On this study, historical annual litter dataset as a major input data for the forest soil carbon model, Yasso was established using a dendrochronological reconstruction method, and the soil carbon dynamics of a Pinus densiflora forest in Gwangneung, Korea was simulated using Yasso. The amount of litter (needle, branch, stem and fine root) production, which was estimated using the dendrochronological method, has increased continuously from 1971 to 2006. Furthermore, there was no significant error between estimated and measured values of litter production (needle and branch) in 2006. The average of simulated soil carbon stock up to 30 cm depth was $46.30{\pm}4.28tCha^{-1}$, which accounted for 53% of carbon stock in trees of the forest, and had no significant difference and error with measured soil carbon stock. Under the climate change trend in Korea according to IPCC A1B scenario, it was estimated that the simulated soil carbon stock in the region would increase continuously from 1971 to 2041 and then decreased until 2100. Compared to the result of the scenario that there is no climate change, the soil carbon stock could be decreased up to 7.58% at 2100. It was inferred the dendrochronological reconstruction method and simulation of Yasso model are useful to estimate soil carbon dynamics of the natural P. densiflora forest. Follow-up researches, such as improvement of the dendrochronological method and Yasso model and their application and validation in various environment, are needed to produce more reliable results.

Community Analysis of Oribatid Mites (Acari : Oribatida) in the Process of Needle Leaf Decomposition in Korean Pine (Pinus koraiensis) Forest of Namsan and Kwangreung (남산과 광릉지역의 잣나무림에서 낙엽분해과정에 관련된 날개응애 군집분석)

  • 배윤환
    • The Korean Journal of Soil Zoology
    • /
    • v.6 no.1_2
    • /
    • pp.25-31
    • /
    • 2001
  • Oribatid mite communities in the process of litter decomposition were analyzed In Korean pine (Pinus koraiensis) forests of Namsan and Kwangreung, which were supposed to be under different environmental selective pressures. Oribatid mites were collected bimonthly from the litter bags (mesh size 0.4 mm, 1.7 mm) which was set up in the forest floor of study sites. This study had been carried out from Jan., 1997 to Sept., 1998. Species abundance of Kwangreung (mesh size 1.7 mm) was significantly higher than that of Namsan (mesh size 1.7 mm), but total no. of species did not exceed 30 species in all study sites. Concerning body length, medium sized oribatid mites (0.3-0.7mm) were more abundant than small ( < 0.3 mm) and large ( > 0.7 mm) sized mites. In Kwangreung, species whose body lengths were 0.2 mm to 0.5 mm were major group. However, a little larger species than Kwangreung's major group were dominant in Namsan. Sorenson similarity index and cluster analysis suggested that there were qualitative and quantitative differences in species composition in Namsan and Kwangreung. More species were collected in May through September than the other sampling times, but the pattern was rather different between first year and second year. Newly immigrant species were high in May in the first year and many of them regained on next year. Diversity indices suggested that species diversity of Kwangreung was higher than that of Namsan. Nearly 70% of total individual abundance was occupied by several dominant species in Namsan and Kwangreung . In the litter bags of mesh size 1.7 mm, the most dominant species was Trichogalumna nipponica in Namsan and Kwangreung, but in the litter bags of mesh size 0.4 mm in Kwangreung it was Ramusella sengbuschi which is smaller than T. nipponica. And important species related to litter decomposition were selected as follows; T. nipponica, Epidamaeus coreanus, Scheloribates latipes, Ceratozetes japonicus, Ramusella sengbuschi, Eohypochthonius crassisetiger, and Cultroribula lata.

  • PDF

Carbon and Nitrogen Inputs from Litterfall Components in Cryptomeria japonica and Chamaecyparis obtusa Plantations (삼나무와 편백 조림지의 낙엽·낙지에 의한 탄소 및 질소유입량)

  • Heejung Park;Gyeongwon Baek;Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.97-106
    • /
    • 2024
  • Evaluating carbon (C) and nitrogen (N) inputs from litterfall is important for soil nutrient management to enhance forest productivity and to understand the mechanisms of nutrient cycling in forest ecosystems. This study was conducted to compare C and N inputs from litterfall components of Cryptomeria japonica D. Don an d Chamaecyparis obtusa Endlicher planted in adjacent sites in the Jinju Research and Experimental Forests in Gyeongsangnam-do, South Korea. Litterfall into litter traps was collected at three-month intervals between December 2020 and December 2021, and the C and N concentrations of the litterfall components were measured. Litterfall amounts were not significantly different between the plantations, except for reproductive litterfall components. Litterfall accumulation peaked between December and March. The litterfall C concentration in the needle and seed litterfall was significantly higher for C. obtusa than for C. japonica. By contrast, the C concentrations in needle and flower litterfall differed seasonally. The mean N concentration of needle litterfall was significantly higher in C. japonica (0.96%) and C. obtusa collected between June and September (1.01%) than in the other seasons (C. japonica: 0.43%; C. obtusa: 0.53%). Carbon and N inputs in both plantations were highest in needle litterfall collected from December to March and lowest in needle litterfall collected from June to September. Annual C input by litterfall was similar between the plantations (C. japonica: 3,054 kg C ha-1 yr-1; C. obtusa: 3,129 kg C ha-1 yr-1), whereas total N input was higher for C. japonica (46.93 kg N ha-1 yr-1) than for C. obtusa (25.17 kg N ha-1 yr-1). The higher N input in the C. japonica plantation than in the C. obtusa plantation was associated with the input of reproductive components. These results could be applied to improve stand-scale models of C and N cycling by litterfall components in C. japonica an d C. obtusa plantations.

Seasonal Distribution of Ticks in Four Habitats near the Demilitarized Zone, Gyeonggi-do (Province), Republic of Korea

  • Chong, Sung Tae;Kim, Heung Chul;Lee, In-Yong;Kollars, Thomas M. Jr.;Sancho, Alfredo R.;Sames, William J.;Chae, Joon-Seok;Klein, Terry A.
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.319-325
    • /
    • 2013
  • This study describes the seasonal distribution of larvae, nymph, and adult life stages for 3 species of ixodid ticks collected by tick drag and sweep methods from various habitats in the Republic of Korea (ROK). Grasses less than 0.5 m in height, including herbaceous and crawling vegetation, and deciduous, conifer, and mixed forests with abundant leaf/needle litter were surveyed at United States (US) and ROK operated military training sites and privately owned lands near the demilitarized zone from April-October, 2004 and 2005. Haemaphysalis longicornis Neumann adults and nymphs were more frequently collected from April-August, while those of Haemaphysalis flava Neumann and Ixodes nipponensis Kitaoka and Saito were collected more frequently from April-July and again during October. H. longicornis was the most frequently collected tick in grass habitats (98.9%), while H. flava was more frequently collected in deciduous (60.2%) and conifer (57.4%) forest habitats. While more H. flava (54.1%) were collected in mixed forest habitats than H. longicornis (35.2%), the differences were not significant. I. nipponensis was more frequently collected from conifer (mean 8.8) compared to deciduous (3.2) and mixed (2.4) forests.

Annual Variations of Litterfall Production in a Broadleaved Deciduous Forest at the Mt. Keumsan LTER Site (금산 장기생태연구 조사지 낙엽활엽수림 낙엽낙지량의 연변동)

  • Kim, Choonsig;Lim, Jong Hwan;Lee, Im Kyun;Park, Byung Bae;Chun, Jung Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.210-215
    • /
    • 2013
  • Litterfall production represents a major contribution of carbon and nutrient cycling in forest ecosystems. This study was carried out to determine the litterfall production in a broadleaved deciduous forest at the Mt. Keumsan Long Term Ecological Research (LTER) site, Southern Korea. Littefall was collected monthly or bimonthly from the site for 7 years from 2004 to2010. Leaf and reproductive (catkins) litters showed a seasonal variation, but litters of needle, branch, and barks were not changed across the seasons. Annual leaf litter of Quercus serrata and Carpinus laxiflora were significantly different (p<0.05) but that of C. cordata, Chamaecyparis obtusa, and Pinus thunbergii was not significantly changed for 7 years (p>0.05). Annual average litterfall production was 5,223 kg/ha, but annual variations were very large with minimum of 4,110 kg/ha/yr in 2004 and maximum of 6,002 kg/ha/yr in 2007. Total litterfall comprised of 2,323 kg/ha/yr in Q. serrata, 442 kg/ha/yr in C. laxiflora, 157 kg/ha/yr in C. cordata, 131 kg/ha/yr in Acer pseudosieboldianum, 390 kg/ha/yr in other deciduous tree species, 74 kg/ha/yr in P. thunbergii, 37 kg/ha/yr in C. obtusa, 672 kg/ha/yr in branches, 515 kg/ha/yr in miscellaneous, 448 kg/ha/yr in reproductive parts, and 54 kg/ha/yr in barks. respectively. The results indicate that litterfall production of the Mt. Keumsan LTER site was yearly fructurated with the positive linear relationship between leaf or total litterfall and annual mean temperature if no disturbance such as a typoon, and was lower than that of other Korean LTER sites.