Estimation of Forest Soil Carbon Stocks with Yasso using a Dendrochronological Approach

연륜연대학적 접근을 이용한 Yasso 모델의 산림토양탄소 저장량 추정

  • Lee, Ah Reum (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University) ;
  • Noh, Nam Jin (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yoon, Tae Kyung (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Sue Kyoung (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Seo, Kyung Won (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Woo-Kyun (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University,Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Cho, Yongsung (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University) ;
  • Son, Yowhan (Department of Climate Environment, Graduate School of Life and Environmental Sciences, Korea University,Division of Environmental Science and Ecological Engineering, Korea University)
  • 이아름 (고려대학교 기후환경학과) ;
  • 노남진 (고려대학교 환경생태공학과) ;
  • 윤태경 (고려대학교 환경생태공학과) ;
  • 이수경 (고려대학교 환경생태공학과) ;
  • 서경원 (고려대학교 환경생태공학과) ;
  • 이우균 (고려대학교 기후환경학과,고려대학교 환경생태공학과) ;
  • 조용성 (고려대학교 기후환경학과) ;
  • 손요환 (고려대학교 기후환경학과,고려대학교 환경생태공학과)
  • Received : 2009.10.28
  • Accepted : 2009.11.16
  • Published : 2009.12.31

Abstract

The role of forest and soil carbon under global climate change is getting important as a carbon sink and it is necessary to research on applicable forest models as well as in the field for a study of these dynamics. On this study, historical annual litter dataset as a major input data for the forest soil carbon model, Yasso was established using a dendrochronological reconstruction method, and the soil carbon dynamics of a Pinus densiflora forest in Gwangneung, Korea was simulated using Yasso. The amount of litter (needle, branch, stem and fine root) production, which was estimated using the dendrochronological method, has increased continuously from 1971 to 2006. Furthermore, there was no significant error between estimated and measured values of litter production (needle and branch) in 2006. The average of simulated soil carbon stock up to 30 cm depth was $46.30{\pm}4.28tCha^{-1}$, which accounted for 53% of carbon stock in trees of the forest, and had no significant difference and error with measured soil carbon stock. Under the climate change trend in Korea according to IPCC A1B scenario, it was estimated that the simulated soil carbon stock in the region would increase continuously from 1971 to 2041 and then decreased until 2100. Compared to the result of the scenario that there is no climate change, the soil carbon stock could be decreased up to 7.58% at 2100. It was inferred the dendrochronological reconstruction method and simulation of Yasso model are useful to estimate soil carbon dynamics of the natural P. densiflora forest. Follow-up researches, such as improvement of the dendrochronological method and Yasso model and their application and validation in various environment, are needed to produce more reliable results.

전 지구적인 기후변화에 따라 산림 및 토양탄소의 역할은 탄소 저장고로서 매우 중요하며, 이들의 동태를 연구하기 위해서는 기존의 현장연구뿐만 아니라 적용 가능한 산림모델 연구가 필요하다. 본 연구에서는 산림토양탄 소모델인 Yasso의 주요 입력자료인 과거의 연간 낙엽량 자료를 연륜연대학적 자료구축과정을 통해 생산하고, 위 모델을 이용하여 광릉지역 천연소나무림(Pinus densiflora)의 토양탄소동태를 모의하였다. 연륜연대학적 자료구축과정을 통해 계산된 임분 내 낙엽(침엽, 가지, 줄기, 세근)의 생산량은 1971년부터 2006년까지 지속적으로 증가해왔다. 또한 2006년 낙엽 생산량(침엽, 가지)의 실측값과 추정값을 비교한 결과 유의적인 오차는 없었다. 모의된 30 cm 깊이까지의 토양탄소 저장량의 임분 전체평균은 $46.30{\pm}4.28tCha^{-1}$로 산림의 임목 내 탄소 저장량의 약 53%를 차지했으며, 실측값과 비교하여 유의한 차이 및 오차가 없었다. IPCC A1B 시나리오에 따른 한반도 기후변화추세를 반영한 이 지역의 모의된 토양탄소 추정량은 1971년부터 2041년까지 지속적으로 증가한 후 2100년까지 감소되는 것으로 나타났다. 기후변화를 고려하지 않는 시나리오의 결과와 비교하면 2100년에 이르러 최고 7.58%까지 토양탄소량이 감소될 수 있다. 본 연륜연대학적 자료 구축방법과 Yasso 모델을 이용한 모의과정은 천연소나무림의 토양탄소동태를 추정하는데 유용한 것으로 판단되었다. 향후 더욱 신뢰성 있는 결과를 생산할 수 있도록 연륜연대학적 방법 및 Yasso 모델의 개선과 다양한 환경에서의 적용 및 타당성평가와 같은 후속연구가 필요한 것으로 사료된다.

Keywords

References

  1. 국립산림과학원. 2009. 재적.중량표 및 임분수확표. 산림청. 대전. pp. 273
  2. 박관수. 1999. 충주지방의 신갈나무와 굴참나무 천연림생태계의 지상부 및 토양 중 탄소고정에 관한 연구. 한국임학회지 88(1): 93-100
  3. 박인협, 김준선. 1989. 한국산 4개 지역형 소나무천연림의 물질 현존량 추정식에 관한 연구. 한국임학회지 78(3): 323-330
  4. 산림청. 2008. 생장목편 DB 구축. 산림청. pp. 88
  5. 이민아, 이우균, 송철철, 이준학, 최현아, 김태민. 2007. 기온 및 강수량의 시공간 변화예측 및 변이성. 한국GIS학회지 15(3): 1-12
  6. 이상태, 윤석락, 박은희, 김종갑, 정영관. 2005. 경북 지역 소나무의 연륜생태학적 특성에 관한 연구. 한국농림기상학회지 7(4): 289-295
  7. 정진현, 김춘식, 이우균. 1998. 지역별, 임분별 산림토양내 탄소량 추정. 산림과학논문집 57: 178-183
  8. 차유미, 이효신, 문자연, 권원태, 부경온. 2007. ECHOG/S를 활용한 미래 동아시아 기후 전망. Atmosphere 17(1): 55-68
  9. Bascietto, M., Cherubini, P. and Scarascia-Mugnozza, G. 2004. Tree rings from a European beech forest chronosequence are useful for detecting growth trends and carbon sequestration. Canadian Journal of Forest Research 34: 481-492 https://doi.org/10.1139/x03-214
  10. Bigler, C. and Bugmann, H. 2004. Predicting the time of tree death using dendrochronological data. Ecological Applications 14(3): 902-914 https://doi.org/10.1890/03-5011
  11. Cherubini, P., Piussi, P. and Schweingruber, F.H. 1996. Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Canadian Journal of Forest Research 26: 991-1001 https://doi.org/10.1139/x26-109
  12. Coleman, K. and Jenkinson, D.S. 1997. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81: 29-44 https://doi.org/10.1016/S0016-7061(97)00079-7
  13. Coomes, D.A., Duncan, R.P., Allen, R.B. and Truscott, J. 2003. Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecology Letters 6: 980-989 https://doi.org/10.1046/j.1461-0248.2003.00520.x
  14. Garcia, O. 1992. Sampling for tree-ring analysis. Paper presented at the IUFRO Conference 'Integrating Forest Information over Space and Time'. 13-7 January 1992, Canberra
  15. Hwang, J., Son, Y., Kim, C., Yi, M.J., Kim, Z.S., Lee, W.K. and Hong, S.K. 2007. Fine root dynamics in thinned and limed pitch pine and Japanese larch plantations. Journal of Plant Nutrition 30: 1821-1829 https://doi.org/10.1080/01904160701628940
  16. Jeon, I.Y., Shin, C.H., Kim, G.H. and Mun, H.T. 2007. Organic carbon distribution of the Pinus densiflora forest on Songgye valley at Mt. Worak national park. Journal of Ecology and Field Biology 30(1): 17-21
  17. Jobbagy, E.G. and Jackson, R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate to vegetation. Ecological Applications 10: 423-436 https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  18. Karjalainen, T. 1996. Model computations on sequestration of carbon in managed forests and wood products under changing climatic conditions in Finland. Journal of Environmental Management 47: 311-328 https://doi.org/10.1006/jema.1996.0056
  19. Kelly, R.H., Parton, W.J., Crocker, G.J., Grace, P.R., Klir, J., Korschens, M., Poulton, P.R. and Richter, D.D. 1997. Simulating trends in soil organic carbon in long-term experiments using the century model. Geoderma 81: 75-90 https://doi.org/10.1016/S0016-7061(97)00082-7
  20. Kim, C. 2004. Effects of stand density on carbon dynamics in a larch (Larix leptolepis) plantation. Journal of Korean Forestry Society 93(6): 355-362
  21. Kim, C.S. and Cho, H.S. 2004. Quantitative comparisons of soil carbon and nutrient storage in Larix leptolepis, Pinus densiflora and Pinus rigitaeda plantations. Korean Journal of Ecology 27(2): 67-71 https://doi.org/10.5141/JEFB.2004.27.2.067
  22. Law, B.E., Thornton, P.E., Irvine, J., Anthoni, P.M. and Tuyl, S.V. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology 7: 755-777 https://doi.org/10.1046/j.1354-1013.2001.00439.x
  23. Lee, A.R., Noh, N.J., Cho, Y.S,, Lee, W.K. and Son, Y. 2009. Estimating the soil carbon stocks for a Pinus densiflora forest using the soil carbon model, Yasso. Journal of Ecology and Field Biology 32(1): 47-53
  24. Liski, J. 1995. Variation in soil organic carbon and thickness of soil horizons within boreal forest stand-effect of trees and implications for sampling. Silva Fennica 29(4): 255-266
  25. Liski, J., Ilvesniemi, H., Mkel, A. and Starr, M. 1998. Model analysis of the effects of soil age, fires and harvesting on the carbon storage of boreal forest soils. European Journal of Soil Science 49(3): 407-416 https://doi.org/10.1046/j.1365-2389.1998.4930407.x
  26. Liski, J., Perruchoud, D. and Karjalainen, T. 2002. Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management 169: 159-175 https://doi.org/10.1016/S0378-1127(02)00306-7
  27. Liski, J., Palosuo, T., Peltoniemi, M. and Sievanen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189: 168-182 https://doi.org/10.1016/j.ecolmodel.2005.03.005
  28. Liski, J. and Westman, C.J. 1995. Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry 29: 183-197 https://doi.org/10.1007/BF02186047
  29. Liski, J., Tuomi, M. and Rasinmaki, J. 2009. Yasso07 user-interface manual. www.environment.fi/syke/yasso
  30. Metsaranta, J.M. and Lieffers, V.J. 2009. Using dendrochronology to obtain annual data for modeling stand development: a supplement to permanent sample plots. Forestry 82(2): 163-173 https://doi.org/10.1093/forestry/cpn051
  31. Metsaranta, J.M., Lieffers, V.J. and Wein, R.W. 2008. Dendrochronological reconstruction of jack pine snag and downed log dynamics in Saskatchewan and Manitoba, Canada. Forest Ecology and Management 255: 1262-1270 https://doi.org/10.1016/j.foreco.2007.10.030
  32. Morisada, K., Ono, K. and Kanomata, H. 2004. Organic carbon stock in forest soils in Japan. Geoderma 119: 21-32 https://doi.org/10.1016/S0016-7061(03)00220-9
  33. Nakane, K. 1995. Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. Forest Ecology and Management 72: 185-197 https://doi.org/10.1016/0378-1127(94)03465-9
  34. Park, G.S., Choi, J.Y., Lee, K.H., Son, Y.M., Kim, R.H., Lee, H.G. and Lee, S.J. 2009. Carbon storage in aboveground, root, and soil of Pinus densiflora stand in six different sites. Korean Journal of Korean Environmental Restoration Technology 12(2): 1-9
  35. Peltoniemi, M., Mkip, R., Liski, J. and Tamminen, P. 2004. Changes in soil carbon with stand age - an evaluation of a modeling method with empirical data. Global Change Biology 10: 2078-2091 https://doi.org/10.1111/j.1365-2486.2004.00881.x
  36. Peltoniemi, M., Palosuo, T., Monni, S. and Mkip, R. 2006. Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation. Forest Ecology and Management 232: 75-85 https://doi.org/10.1016/j.foreco.2006.05.045
  37. Starr, M., Saarsalma, A., Hokkanen, T., Merila, P. and Helmisaari, H. 2005. Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. Forest Ecology and Management 205: 215-225 https://doi.org/10.1016/j.foreco.2004.10.047
  38. Thorpe, H.C., Thomas, S.C. and Caspersen, J.P. 2007. Residual-tree growth responses to partial stand harvest in the black spruce (Picea mariana) boreal forest. Canadian Journal of Forest Research 37(9): 1563-1571 https://doi.org/10.1139/X07-148
  39. UNFCCC. 1997. Kyoto Protocol. http://www.unfccc.de/resource (2009. 8. 4)
  40. Van Laar, Anthonie and Aka, Alparslan. 2007. Forest Mensuration : Managng Forest Ecosystems. Springer. Dordrecht, The Netherlands. http://www.springerlink.com/ content/t6326m (2009. 9. 24) https://doi.org/10.1007/978-1-4020-5991-9
  41. Vanninen, P. and Mkel, A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology 19: 823-830
  42. Watson, R.T., Noble, I., Bolin, B., Ravindranath, N., Verardo, D. and Dokken, D. 2000. Land use, Land-use Change, and Forestry. Cambridge University Press. Cambridge, U.K. pp. 377