• 제목/요약/키워드: nearest-neighbor analysis

검색결과 257건 처리시간 0.023초

가중 네트워크 분석을 위한 최근접이웃중심성 척도의 일반화 (Generalizing Nearest Neighbor Centrality for Weighted Network Analysis)

  • 이재윤
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2013년도 제20회 학술대회 논문집
    • /
    • pp.19-22
    • /
    • 2013
  • 네트워크 분석이 확산되면서 여러 분야에서 다양한 중심성 척도가 개발되어 활용되고 있으나 가중 네트워크에서 지역중심성을 측정할 수 있는 척도로는 최근접이웃중심성 이외에는 거의 알려져 있지 않다. 최근접이웃중심성 척도는 동률값이 흔히 나타나므로 변별력이 낮다는 단점을 가지고 있다. 이 연구에서는 최근접이웃중심성 척도를 일반화한 이웃중심성 척도를 제안하고 가상 자료 및 실제 자료에 대해 적용하여 검증해보았다.

  • PDF

주성분분석을 이용한 치아의 다면 특징 기반 생체식별 (Biometrics Based on Multi-View Features of Teeth Using Principal Component Analysis)

  • 정찬욱;김명수;신영숙
    • 인지과학
    • /
    • 제18권4호
    • /
    • pp.445-455
    • /
    • 2007
  • 본 논문은 주성분분석기법을 이용한 치아의 다면특징을 기반으로 한 새로운 생체 식별시스템을 제안한다. 치아의 다면 특징들은 정면치아와 좌측, 우측 치아들로 이루어진다. 우리는 실생활 환경에서 보안 접속을 위하여 치아를 이용한 생체식별을 목표로 한다. 다면 치아 영상들은 특별히 고안된 실험환경에서 획득되었으며, 개인 식별을 위한 특징으로 42개의 주성분이 개발되었다. 개인 식별은 학습된 다면치아와 회전된 다면치아 사이의 최소근접기법에 의해 계산되었다. 2도 회전 후의 다면치아 인식성능은 평균값으로 좌측면 치아 95.2%, 우측면 치아 91.3%을 보였다.

  • PDF

가중 네트워크를 위한 일반화된 지역중심성 지수 (A Generalized Measure for Local Centralities in Weighted Networks)

  • 이재윤
    • 정보관리학회지
    • /
    • 제32권2호
    • /
    • pp.7-23
    • /
    • 2015
  • 네트워크 분석이 확산되면서 매개중심성이나 연결정도중심성과 같은 다양한 중심성 지수가 개발되어 활용되고 있으나, 가중 네트워크에서 지역중심성을 측정할 수 있는 지수로는 최근접이웃중심성 이외에는 거의 알려져 있지 않다. 이 연구에서는 가중 네트워크를 위한 일반화된 지역중심성 지수인 이웃중심성 지수를 새롭게 제안한다. 이웃중심성 지수는 파라미터 ${\alpha}$를 사용하여 이진 네트워크를 위한 연결정도중심성 지수와 가중 네트워크를 위한 최근접이웃중심성 지수를 일반화한 것이다. 6가지 실제 네트워크 데이터를 대상으로 하여 제안된 지수의 특징과 적정 파라미터 값을 살펴보는 실험을 수행하고 결과를 보고하였다.

Half Hanning 윈도우 전처리를 통한 기저 세포암 자동 검출 성능 개선 (Performance Improvement of Automatic Basal Cell Carcinoma Detection Using Half Hanning Window)

  • 박아론;백성준;민소희;유홍연;김진영;홍성훈
    • 한국콘텐츠학회논문지
    • /
    • 제6권12호
    • /
    • pp.105-112
    • /
    • 2006
  • 본 연구에서는 일반적으로 잘 알려진 기저 세포암 검출을 위한 간단한 전처리 방법을 제안하였다. 전처리 과정은 half Hanning 윈도우와 함께 데이터를 클리핑하고 PCA(principal components analysis)를 이용하여 차원을 감소하였다. Half Hanning 윈도우는 $1650cm^{-1}$ 피크 부근의 크기를 낮춤으로써 음성 오류율을 줄여 분류 성능을 향상시켰다. 이 실험에서 사용한 MAP(maximum a posteriori), KNN (k-nearest neighbor), PNN(probabilistic neural network), MLP(multilayer perceptron), SVM(support vector machine)와 MSE(minimum squared error)의 분류결과는 제안한 방법이 효과적임을 입증하고 있다. KNN 분류방법은 216개 라만 스펙트럼에 대한 분류실험에서 민감도가 약 97.3%로 제안한 윈도우를 적용한 이 실험에서 기저 세포암 검출 성능이 가장 많이 개선되었다.

  • PDF

선별 시스템 기반 표지 유전자를 포함한 난소암 마이크로어레이 데이터 분류 (Classification of Ovarian Cancer Microarray Data based on Intelligent Systems with Marker gene)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.747-752
    • /
    • 2011
  • 마이크로어레이 분류는 전형적으로 분류기 디자인과 에러 추정이 현저하게 작은 샘플에 기반한다는 것과 교차 검증 에러 추정이 대다수의 논문에 사용된다는 주목할 만한 두 가지 특징을 소유한다. 마이크로어레이 난소 암 데이터는 수 만개의 유전자 발현으로 구성되어 있고, 이러한 정보를 동시에 분석하기 위한 어떤 체계적인 절차도 없다. 본 논문에서는, 통계에 따라 유전자의 우선순위를 정함으로써 표지유전자를 선택하였고, 널리 보급되어 있는 분류 규칙인 선형 분류 분석, 3-nearest-neighbor와 결정 트리 알고리즘은 표지 유전자를 선택한 데이터와 선택하지 않는 데이터의 분류 정확도 비교를 위해 사용되어졌다. ANOVA를 이용하여 선택된 표지 유전자를 포함하는 마이크로어레이 데이터 셋에 선영 분류분석 규칙을 적용한 결과 97.78%의 가장 높은 분류 정확도와 가장 낮은 예측 에러 추정치를 나타내었다.

Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구 (Malicious Code Detection using the Effective Preprocessing Method Based on Native API)

  • 배성재;조재익;손태식;문종섭
    • 정보보호학회논문지
    • /
    • 제22권4호
    • /
    • pp.785-796
    • /
    • 2012
  • 본 논문에서는 악성코드의 시스템 콜 빈도수를 특징값으로 행위 기반 탐지(behavior-based detection)를 할 때, 시스템 콜의 속성 개수보다 학습데이터 개수가 적더라도 효과적으로 악성 코드를 탐지하는 기법을 제안한다. 이 연구에서는, 프로그램 코드가 동작할 때, 발생시키는 윈도우 커널 데이터인 Native API를 수집하여 빈도수로 정규화한 것을 기본적인 속성 값으로 사용하였다. 또한 악성코드와 정상 코드를 효과적으로 분류할 수 있으면서, 악성코드를 분류하기 위한 기본적인 속성의 개수보다 학습데이터 개수가 적어도 적용 가능한 GLDA(Generalized Linear Discriminant Analysis)를 사용하여, 새로운 속성 값들로 전환하였다. 분류 기법으로는 베이지언 분류법의 일종인 kNN(k-Nearest Neighbor) 분류법을 이용하여 악성 코드를 탐지하였다. 제안된 탐지 기법의 성능을 검증하기 위하여 수집된 Native API 로 기존의 연구 방법과 비교 검증하였다. 본 논문에 제안된 기법이 탐지율(detection rate) 100%인 Threshold 값에서, 다른 탐지 기법보다 낮은 오탐율(false positive rate)을 나타내었다.

부도예측 개선을 위한 하이브리드 언더샘플링 접근법 (A Hybrid Under-sampling Approach for Better Bankruptcy Prediction)

  • 김태훈;안현철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.173-190
    • /
    • 2015
  • 부도는 막대한 사회적, 경제적 손실을 야기할 수 있으므로, 미리 부도여부를 정확하게 예측하여 선제 대응하는 것은 경영분야에서 대단히 중요한 의사결정문제 중 하나이다. 이에 지능정보시스템 분야에서도 그간 기업의 재무 데이터에 기반해 부도예측을 개선하기 위한 노력을 기울여왔는데, 안타깝게도 기존의 연구들은 대부분 분류모형의 성능 개선을 통해 예측 정확도를 개선하는 것에만 주로 초점을 맞추어 다른 요소들을 충분히 고려하지 못했다는 한계가 있다. 이러한 배경에서 본 연구는 부도예측 모형의 정확도를 개선하기 위한 방편으로 새로운 데이터 전처리 방법, 그 중에서도 효과적인 표본추출 방법을 제안하고자 한다. 일반적으로 부도예측을 위해 사용되는 데이터들은 극심한 데이터 불균형 문제에 노출되어 있는데, 본 연구에서는 k-reverse nearest neighbor(k-RNN)와 one-class support vector machine(OCSVM) 방법을 결합한 하이브리드 언더샘플링(hybrid under-sampling) 접근법을 통해 이같은 데이터 불균형 문제를 해결하고자 하였다. 본 연구에서 제안한 접근법에서 k-RNN은 이상치를 효과적으로 제거할 수 있으며, OCSVM은 다수를 구성하는 등급의 데이터로부터 정보량이 풍부한 표본만 효과적으로 선택할 수 있는 수단으로 활용될 수 있다. 제안된 기법의 성능을 검증하기 위해, 본 연구에서는 국내 한 은행의 비외감기업 부도예측모형 구축에 제안 기법을 적용해 본 뒤, 일반적으로 많이 사용되는 랜덤샘플링(random sampling)과 제안 기법의 성능을 비교해 보았다. 그 결과, 로지스틱 회귀분석, 판별분석, 의사결정나무, SVM 등 대다수의 분류모형에 있어 분류 정확도가 개선됨을 확인할 수 있었으며, 모든 분류모형에 있어 부정 오류, 즉 부실기업을 정상으로 예측하는 오류율이 크게 감소함을 확인할 수 있었다.

사고등급별 고속도로 교통사고 처리시간 예측모형 개발 (Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level)

  • 이숭봉;한동희;이영인
    • 대한교통학회지
    • /
    • 제33권5호
    • /
    • pp.497-507
    • /
    • 2015
  • 고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.

k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류 (Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.229-238
    • /
    • 2019
  • 목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.

개혁신학과 복음주의에 관한 계량서지학적 비교 연구 (A Comparative Study using Bibliometric Analysis Method on the Reformed Theology and Evangelicalism)

  • 유영준;이재윤
    • 한국비블리아학회지
    • /
    • 제29권3호
    • /
    • pp.41-63
    • /
    • 2018
  • 이 연구에서는 개혁신학과 복음주의, 중립적인 신학적 입장을 가지는 학술지와 색인어, 저자를 대상으로 계량서지학적 분석 방법을 적용하였다. 구체적인 분석방법은 평균 연결 군집화, 이웃중심성 척도, 프로파일 코사인 유사도를 활용하여 세 가지 결과를 제시하였다. 특히 저자 간 관계를 분석할 때에는 저자 사이에 핵심 공유 색인어를 파악해서 연구 주제를 해석하는 새로운 시도를 해보았다. 학술지 분석에서는 9개 학술지가 크게 개혁신학과 복음주의의 두 개 군집으로 나뉘어졌지만, 개혁신학을 지향하는 장로교단 학술지인 장신논단만 복음주의 군집에 속하였다. 두 군집의 색인어 분석에서도 개혁신학과 복음주의가 두 군집을 대표하는 주요어로 나타났다. 저자 분석에서는 9개의 군집이 산출되었다. 이중에서 4개의 군집에는 주로 개혁신학을 연구하는 장로교단 신학자들이 포함되었으며, 5개 군집에는 장로교단에 소속되지 않은 신학자들이 주로 포함되었다. 따라서 학술지와 색인어, 저자에 대한 계량서지학적 분석 모두에서 일관되게 개혁신학 군집과 복음주의 군집을 도출하였다.