네트워크 분석이 확산되면서 여러 분야에서 다양한 중심성 척도가 개발되어 활용되고 있으나 가중 네트워크에서 지역중심성을 측정할 수 있는 척도로는 최근접이웃중심성 이외에는 거의 알려져 있지 않다. 최근접이웃중심성 척도는 동률값이 흔히 나타나므로 변별력이 낮다는 단점을 가지고 있다. 이 연구에서는 최근접이웃중심성 척도를 일반화한 이웃중심성 척도를 제안하고 가상 자료 및 실제 자료에 대해 적용하여 검증해보았다.
본 논문은 주성분분석기법을 이용한 치아의 다면특징을 기반으로 한 새로운 생체 식별시스템을 제안한다. 치아의 다면 특징들은 정면치아와 좌측, 우측 치아들로 이루어진다. 우리는 실생활 환경에서 보안 접속을 위하여 치아를 이용한 생체식별을 목표로 한다. 다면 치아 영상들은 특별히 고안된 실험환경에서 획득되었으며, 개인 식별을 위한 특징으로 42개의 주성분이 개발되었다. 개인 식별은 학습된 다면치아와 회전된 다면치아 사이의 최소근접기법에 의해 계산되었다. 2도 회전 후의 다면치아 인식성능은 평균값으로 좌측면 치아 95.2%, 우측면 치아 91.3%을 보였다.
네트워크 분석이 확산되면서 매개중심성이나 연결정도중심성과 같은 다양한 중심성 지수가 개발되어 활용되고 있으나, 가중 네트워크에서 지역중심성을 측정할 수 있는 지수로는 최근접이웃중심성 이외에는 거의 알려져 있지 않다. 이 연구에서는 가중 네트워크를 위한 일반화된 지역중심성 지수인 이웃중심성 지수를 새롭게 제안한다. 이웃중심성 지수는 파라미터 ${\alpha}$를 사용하여 이진 네트워크를 위한 연결정도중심성 지수와 가중 네트워크를 위한 최근접이웃중심성 지수를 일반화한 것이다. 6가지 실제 네트워크 데이터를 대상으로 하여 제안된 지수의 특징과 적정 파라미터 값을 살펴보는 실험을 수행하고 결과를 보고하였다.
본 연구에서는 일반적으로 잘 알려진 기저 세포암 검출을 위한 간단한 전처리 방법을 제안하였다. 전처리 과정은 half Hanning 윈도우와 함께 데이터를 클리핑하고 PCA(principal components analysis)를 이용하여 차원을 감소하였다. Half Hanning 윈도우는 $1650cm^{-1}$ 피크 부근의 크기를 낮춤으로써 음성 오류율을 줄여 분류 성능을 향상시켰다. 이 실험에서 사용한 MAP(maximum a posteriori), KNN (k-nearest neighbor), PNN(probabilistic neural network), MLP(multilayer perceptron), SVM(support vector machine)와 MSE(minimum squared error)의 분류결과는 제안한 방법이 효과적임을 입증하고 있다. KNN 분류방법은 216개 라만 스펙트럼에 대한 분류실험에서 민감도가 약 97.3%로 제안한 윈도우를 적용한 이 실험에서 기저 세포암 검출 성능이 가장 많이 개선되었다.
마이크로어레이 분류는 전형적으로 분류기 디자인과 에러 추정이 현저하게 작은 샘플에 기반한다는 것과 교차 검증 에러 추정이 대다수의 논문에 사용된다는 주목할 만한 두 가지 특징을 소유한다. 마이크로어레이 난소 암 데이터는 수 만개의 유전자 발현으로 구성되어 있고, 이러한 정보를 동시에 분석하기 위한 어떤 체계적인 절차도 없다. 본 논문에서는, 통계에 따라 유전자의 우선순위를 정함으로써 표지유전자를 선택하였고, 널리 보급되어 있는 분류 규칙인 선형 분류 분석, 3-nearest-neighbor와 결정 트리 알고리즘은 표지 유전자를 선택한 데이터와 선택하지 않는 데이터의 분류 정확도 비교를 위해 사용되어졌다. ANOVA를 이용하여 선택된 표지 유전자를 포함하는 마이크로어레이 데이터 셋에 선영 분류분석 규칙을 적용한 결과 97.78%의 가장 높은 분류 정확도와 가장 낮은 예측 에러 추정치를 나타내었다.
본 논문에서는 악성코드의 시스템 콜 빈도수를 특징값으로 행위 기반 탐지(behavior-based detection)를 할 때, 시스템 콜의 속성 개수보다 학습데이터 개수가 적더라도 효과적으로 악성 코드를 탐지하는 기법을 제안한다. 이 연구에서는, 프로그램 코드가 동작할 때, 발생시키는 윈도우 커널 데이터인 Native API를 수집하여 빈도수로 정규화한 것을 기본적인 속성 값으로 사용하였다. 또한 악성코드와 정상 코드를 효과적으로 분류할 수 있으면서, 악성코드를 분류하기 위한 기본적인 속성의 개수보다 학습데이터 개수가 적어도 적용 가능한 GLDA(Generalized Linear Discriminant Analysis)를 사용하여, 새로운 속성 값들로 전환하였다. 분류 기법으로는 베이지언 분류법의 일종인 kNN(k-Nearest Neighbor) 분류법을 이용하여 악성 코드를 탐지하였다. 제안된 탐지 기법의 성능을 검증하기 위하여 수집된 Native API 로 기존의 연구 방법과 비교 검증하였다. 본 논문에 제안된 기법이 탐지율(detection rate) 100%인 Threshold 값에서, 다른 탐지 기법보다 낮은 오탐율(false positive rate)을 나타내었다.
부도는 막대한 사회적, 경제적 손실을 야기할 수 있으므로, 미리 부도여부를 정확하게 예측하여 선제 대응하는 것은 경영분야에서 대단히 중요한 의사결정문제 중 하나이다. 이에 지능정보시스템 분야에서도 그간 기업의 재무 데이터에 기반해 부도예측을 개선하기 위한 노력을 기울여왔는데, 안타깝게도 기존의 연구들은 대부분 분류모형의 성능 개선을 통해 예측 정확도를 개선하는 것에만 주로 초점을 맞추어 다른 요소들을 충분히 고려하지 못했다는 한계가 있다. 이러한 배경에서 본 연구는 부도예측 모형의 정확도를 개선하기 위한 방편으로 새로운 데이터 전처리 방법, 그 중에서도 효과적인 표본추출 방법을 제안하고자 한다. 일반적으로 부도예측을 위해 사용되는 데이터들은 극심한 데이터 불균형 문제에 노출되어 있는데, 본 연구에서는 k-reverse nearest neighbor(k-RNN)와 one-class support vector machine(OCSVM) 방법을 결합한 하이브리드 언더샘플링(hybrid under-sampling) 접근법을 통해 이같은 데이터 불균형 문제를 해결하고자 하였다. 본 연구에서 제안한 접근법에서 k-RNN은 이상치를 효과적으로 제거할 수 있으며, OCSVM은 다수를 구성하는 등급의 데이터로부터 정보량이 풍부한 표본만 효과적으로 선택할 수 있는 수단으로 활용될 수 있다. 제안된 기법의 성능을 검증하기 위해, 본 연구에서는 국내 한 은행의 비외감기업 부도예측모형 구축에 제안 기법을 적용해 본 뒤, 일반적으로 많이 사용되는 랜덤샘플링(random sampling)과 제안 기법의 성능을 비교해 보았다. 그 결과, 로지스틱 회귀분석, 판별분석, 의사결정나무, SVM 등 대다수의 분류모형에 있어 분류 정확도가 개선됨을 확인할 수 있었으며, 모든 분류모형에 있어 부정 오류, 즉 부실기업을 정상으로 예측하는 오류율이 크게 감소함을 확인할 수 있었다.
고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.
Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
Journal of the Korean Wood Science and Technology
/
제47권2호
/
pp.229-238
/
2019
목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.
이 연구에서는 개혁신학과 복음주의, 중립적인 신학적 입장을 가지는 학술지와 색인어, 저자를 대상으로 계량서지학적 분석 방법을 적용하였다. 구체적인 분석방법은 평균 연결 군집화, 이웃중심성 척도, 프로파일 코사인 유사도를 활용하여 세 가지 결과를 제시하였다. 특히 저자 간 관계를 분석할 때에는 저자 사이에 핵심 공유 색인어를 파악해서 연구 주제를 해석하는 새로운 시도를 해보았다. 학술지 분석에서는 9개 학술지가 크게 개혁신학과 복음주의의 두 개 군집으로 나뉘어졌지만, 개혁신학을 지향하는 장로교단 학술지인 장신논단만 복음주의 군집에 속하였다. 두 군집의 색인어 분석에서도 개혁신학과 복음주의가 두 군집을 대표하는 주요어로 나타났다. 저자 분석에서는 9개의 군집이 산출되었다. 이중에서 4개의 군집에는 주로 개혁신학을 연구하는 장로교단 신학자들이 포함되었으며, 5개 군집에는 장로교단에 소속되지 않은 신학자들이 주로 포함되었다. 따라서 학술지와 색인어, 저자에 대한 계량서지학적 분석 모두에서 일관되게 개혁신학 군집과 복음주의 군집을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.