• 제목/요약/키워드: nearest feature line

검색결과 14건 처리시간 0.028초

Elongated Radial Basis Function for Nonlinear Representation of Face Data

  • 김상기;유선진;이상윤
    • 한국통신학회논문지
    • /
    • 제36권7C호
    • /
    • pp.428-434
    • /
    • 2011
  • Recently, subspace analysis has raised its performance to a higher level through the adoption of kernel-based nonlinearity. Especially, the radial basis function, based on its nonparametric nature, has shown promising results in face recognition. However, due to the endemic small sample size problem of face data, the conventional kernel-based feature extraction methods have difficulty in data representation. In this paper, we introduce a novel variant of the RBF kernel to alleviate this problem. By adopting the concept of the nearest feature line classifier, we show both effectiveness and generalizability of the proposed method, particularly regarding the small sample size issue.

가상 데이터와 융합 분류기에 기반한 얼굴인식 (Face Recognition based on Hybrid Classifiers with Virtual Samples)

  • 류연식;오세영
    • 전자공학회논문지CI
    • /
    • 제40권1호
    • /
    • pp.19-29
    • /
    • 2003
  • 본 논문은 인위적으로 생성된 가상 학습 데이터와 융합 분류기를 이용한 얼굴인식 알고리즘을 제안한다. 특징공간에서의 최근접 특징 선택 방법과 연결주의 모델에 기반한 서로 다른 형태의 분류기를 융합하여 통합효과를 얻도록 하였다. 두 분류기는 모두 학습 데이터의 공간적인 분포에 따라 생성된 가상 학습데이터를 이용하여 학습되고 이용된다. 첫째로, 특징 공간에서의 각 정보(Angular Infnrmation) 를 이용하는 최근접특징각(the Nearest Feature Angle : NFA)을 이용하여 저장된 학습데이터와 가장 근접한 것을 찾고, 둘째로, 질의(Query) 얼굴 특징 정보를 정면얼굴 영상의 특징정보로 투영하여 얻은 정보에 기반한 분류기의 결과를 이용한다. 정면영상 특징정보로의 투영은 다층 신경망을 이용하여 정면 회상망(Frontal Recall Network)을 구현하였고, 이것을 여러 개 묶어 앙상블 네트웍으로 구성한 Ensemble 회상망(Ensemble Recall Network)을 사용하여 일반화 성능을 향상시켰다. 끝으로, 각 분류기의 결과에 따라 융합 분류기가 최종 결과를 선택하도록 하였다. 제안된 알고리즘을 6 종류의 서고 다른 학습/시험데이터 군에 적용하여 평균 96.33%의 인식률을 얻었다. 이것은 특징라인에 기반한 방법(the Nearest Feature Line) 평균 에러율의 61.2% 이며, 단일 분류기를 사용한 경우 보다 안정된 견과를 얻고 있다.

고유벡터를 이용한 필기체 숫자인식 (Recognition of Handwritten Numerals using Eigenvectors)

  • 박중조;김경민;송명현
    • 한국정보통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.986-991
    • /
    • 2002
  • 본 논문에서는 고유벡터를 이용한 오프라인 필기체 숫자인식 기법을 제시한다. 본 기법에서는 KL 변환에 의한 고유벡터를 이용하여 통계적으로 숫자의 특징을 추출하며, 특징공간상에서 최소거리기법으로 숫자를 인식한다. 본 기법에서 제안된 특징추출 방법에서는 많은 표본 숫자영상에서 각 숫자들의 특징을 가장 잘 표현하는 기저벡터를 찾아내고 이로부터 숫자의 특징을 구한다. 제시된 기법의 성능 평가를 위해 Concordia대학의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 96.2%의 인식률을 얻을 수 있었다.

KL변환에 의한 오프라인 필기체 숫자인식 (Recognition of Off-line Handwritten Numerals using KL Transformation)

  • 박중조;김경민;송명현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.912-915
    • /
    • 2002
  • 본 연구에서는 KL변환에 의한 고유벡터를 구하고, 이를 이용한 오프라인 필기체 숫자인식 기법을 제시하고자 한다. 본 기법에서는 KL 변환에 의한 고유벡터를 이용하여 통계적으로 숫자의 특징을 추출하며, 특징 공간상에서 최소거리 기법으로 숫자를 인식한다. 본 기법에서 제안된 특징추출 방법에서는 많은 표본 숫자영상에서 각 숫자들의 특징을 가장 잘 표현하는 기저벡터를 찾아내고 이로부터 필기체숫자의 특징을 구한다. 제안된 기법의 성능 평가를 위해 캐나다 Concordia 대학의 무제약 필기체 숫자 데이터베이스를 사용하였으며, 실험한 결과 인식률은 96.2%이었다.

  • PDF

음성/음악 판별을 위한 특징 파라미터와 분류기의 성능비교 (Performance Comparison of Feature Parameters and Classifiers for Speech/Music Discrimination)

  • 김형순;김수미
    • 대한음성학회지:말소리
    • /
    • 제46호
    • /
    • pp.37-50
    • /
    • 2003
  • In this paper, we evaluate and compare the performance of speech/music discrimination based on various feature parameters and classifiers. As for feature parameters, we consider High Zero Crossing Rate Ratio (HZCRR), Low Short Time Energy Ratio (LSTER), Spectral Flux (SF), Line Spectral Pair (LSP) distance, entropy and dynamism. We also examine three classifiers: k Nearest Neighbor (k-NN), Gaussian Mixure Model (GMM), and Hidden Markov Model (HMM). According to our experiments, LSP distance and phoneme-recognizer-based feature set (entropy and dunamism) show good performance, while performance differences due to different classifiers are not significant. When all the six feature parameters are employed, average speech/music discrimination accuracy up to 96.6% is achieved.

  • PDF

라이다 자료를 이용한 하천지역 인공 제방선 추출 (Construction of a artificial levee line in river zones using LiDAR Data)

  • 정윤재;박현철;조명희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

키스트로크 인식을 위한 패턴분류 방법 (Pattern Classification Methods for Keystroke Identification)

  • 조태훈
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.956-961
    • /
    • 2006
  • 키스트로크 시간간격은 컴퓨터사용자의 검증 및 인식에서 분별적인 특징이 될 수 있다. 본 논문은 키스트로크 시간간격을 특징으로, 신경망의 역전파 알고리즘과 Bayesian 분류기, 그리고 k-NN을 이용한 분류기의 사용자 인식 성능을 비교 실험하였다. 실험 결과, 사용자당 샘플의 개수가 작을 경우에는 k-NN 알고리즘이 가장 성능이 좋았고, 사용자당 샘플의 개수가 많을 경우에는 Bayesian 분류기의 성능이 가장 뛰어난 결과를 보였다. 따라서 웹기반 온라인 사용자인식을 위해서는 사용자별 키스트로크 샘플의 수에 따라 k-NN이나 Bayesian 분류기를 선택적으로 사용하는 것이 바람직할 것으로 보인다.

GPU를 이용한 특징 기반 영상모핑의 가속화 (Acceleration of Feature-Based Image Morphing Using GPU)

  • 김은지;윤승현;이지은
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제20권2호
    • /
    • pp.13-24
    • /
    • 2014
  • 본 논문에서는 특징 기반 영상모핑(feature-based image morphing)을 위한 GPU (Graphics Processing Unit) 기반의 가속화 기법을 제시한다. 제안된 기법은 모핑과정에서 픽셀과 제어선 사이의 최단거리를 효율적으로 계산하기 위해 그래픽스 하드웨어의 깊이 버퍼(depth-buffer)를 이용한다. 먼저 원본영상(source image)과 최종영상(destination image)에 사용자입력을 통해 특징을 표현하는 제어선들을 지정하고, 각 제어선의 거리함수(distance function)를 서로 다른 색상을 갖는 두개의 사각형과 원뿔로 렌더링한다. 그래픽스 파이프라인(graphics pipeline)을 통해 각 픽셀에서 가장 가까운 제어선까지의 거리는 깊이 버퍼에 저장되고, 이는 모핑연산을 효율적으로 수행하는데 사용된다. 본 논문에서는 픽셀 단위의 모핑 연산을 CUDA(Compute Unified Device Architecture)를 이용하여 병렬화함으로써 모핑의 속도를 더욱 향상시키며, 다양한 크기의 입력영상에 대하여 각각 CPU와 GPU를 이용한 영상모핑 실험을 통해 제안된 기법의 효율성을 입증한다.

점패턴분석을 이용한 수치지형도의 점사상 일반화 (Generalization of Point Feature in Digital Map through Point Pattern Analysis)

  • 유근배
    • Spatial Information Research
    • /
    • 제6권1호
    • /
    • pp.11-23
    • /
    • 1998
  • GIS 분야에서 지도 일반화는 공간자료의 상세도를 결정하여 효과적으로 자료를 가시화(Visualixation)하거나 자료의 해상력을 변화시켜 변환하는 기능을 수행한다. 최근까지 지도 일반화는 선사상 (Line Features)에 집중되었고, 수치지도를 구성하고 있는 정보량과 그 중요성에 비하여 점사상 (Point Features)에 대한 연구는 상대적으로 미미하였다. 이러한 맥락에서 본 연구는 점사상에 대한 구체적인 일반화 방안을 모색하는데 목적을 둔다. 특히 점사상의 일반화에서 원자료의 기하학적 특성을 파악하는데 가장 중요하게 고려한 요소로 점사상의 분포패턴을 선정하였다. 즉 'Grieg-Smith방법'을 활용한 방격분석 (Quadrat Analysis)과 최근린분석 (Nearest-Neighbour Analysis)를 통해 점사상이 갖고 있는 분포패턴의 특성을 찾아낸 다음, 이를 변형시키지 않도록 일반화의 기준거리(Threshold)를 설정하여 점사상을 제거하는 방법을 통해 점사상의 일반화를 시도하였다. 따라서 이 연구에서 제시한 점사상의 일반화 방안은 원래 점사상이 갖고 있는 기하학적 특성을 최대한 유지한다.

  • PDF

적외선을 이용한 정맥인식 (Vein Recognition Using Infra-red Imaging)

  • 정연성;남부희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.261-263
    • /
    • 2005
  • In this paper, we implement an identification system using the vein image of the hand. The vein pattern is obtained in the grey-scale 2D image through the infrared-red imaging from back of the hand. Since the frame has lack of clearance, we use some enhancing methods such as the complement, addition, and multiplication to the image to increase the contrast. After Wiener filtering for smoothness of the vein pattern, we transform the image into the binary image with mean function. The binarized image is session thinned and the cross-points in the vein tree are obtained by calculating the number of pixels connected because the image is shaped as a tree. We choose the point and find the nearest to the center if it has majority, where we find the two end points of the selected line. We can get the angle between the two lines joined at the cross-point and store its coordinates, angle, and label the values. The values are used as the feature vector of the vein pattern. This procedure is similar to the human cognition sequences. It is shown that the proposed method is simple for the vein recognition.

  • PDF