• Title/Summary/Keyword: near-wall modeling

Search Result 39, Processing Time 0.023 seconds

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

Stress Function-Based Interlaminar Stress Analysis of Composite Laminates under Complex Loading Conditions (응력함수에 기초한 복합 하중하의 복합재 적층판의 층간응력 해석)

  • Kim, H.S.;Kim, J.Y.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.52-57
    • /
    • 2010
  • Interlaminar stresses near the free edges of composite laminates have been analyzed considering wall effects. Interface modeling of bonding layer was introduced to explain the wall effect. Using Lekhnitskii stress functions and the principle of complementary virtual work, the interlaminar stresses were obtained, which satisfied the traction free boundary conditions not only at the free edges, but also at the top and bottom surfaces of laminates. The interface modeling provides not singular stresses but concentrated finite interlaminar stresses. The significant amount of reductions of stresses at the free edge are observed compared to the results without interface modeling. The real stress state can be predicted accurately and the results demonstrate the usefulness of the proposed interface modeling for the strength design of composite laminates.

TURBULENCE MODULATION OF THE UPWARD TURBULENT BUBBLY FLOW IN VERTICAL DUCTS

  • ZHANG, HONGNA;YOKOMINE, TAKEHIKO;KUNUGI, TOMOAKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • The present paper aims at improving the modeling of turbulence for the upward turbulent bubbly flow through the use of experimental databases that contain data on small and large vertical ducts. First, the role of bubble-induced turbulence was analyzed, which indicated the dominant role of the bubble-induced turbulence in the duct center for relatively high void fraction cases. Therefore, the turbulence therein was mainly focused on, which indicated that the stronger turbulence could be induced by bubbles in large ducts with similar void fractions as compared to that in small ducts. Next, the turbulence of upward turbulent bubbly flow near the wall is discussed to understand the interaction between the wall-induced and bubble-induced turbulence. It showed that the existence of a wall could suppress the bubble-induced turbulence given the same void fraction, and the existence of bubbles could also suppress the solely wall-induced turbulence as compared to the single-phase turbulent flow, even though the total turbulence is enhanced. The above characteristics indicated that the current turbulence modeling method needs to be modified, especially when the bubble-induced turbulence plays a dominant role.

Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry (벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

Mass Movement of Tieback Walls (앵커의 위치에 따른 토류벽의 Mass 변형특성)

  • 김낙경;박종식;주준환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.537-544
    • /
    • 2003
  • Mass movement of anchored walls is defined and its characteristics were discussed. A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and used in practice. However, the behavior of an anchored wall can not be predicted well, if the locations of anchor bonded zone are near the wall. Mass movement is defined as the movement of anchor bonded zone due to the excavation without the change in the anchor load. Case histories of anchored walls were analyzed and the normalized mass movement chart were developed. This mass movement chart can provide the idea how to locate anchors to minimize the deflection of the wall. The further the anchor bonded zone is located from the wall, the less the movement of the wall due to excavation occurs.

  • PDF

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.

Capability of Turbulence Modeling Schemes on Estimating the Film Cooling at Parallel Wall Jet-Nozzle Configuration (평행 벽 제트-노즐 형상에서 난류모델별 막냉각 예측 능력)

  • Lee, Jun;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • Numerical simulation has been performed in this study to investigate the capabilities of turbulence modeling schemes on estimating the film cooling at a referenced parallel wall jet-nozzle configuration. Also a additional simulation has been performed for film cooling under 2-dimensional axis symmetry conditions at a parallel wall jet-nozzle configuration. It was concluded that the best turbulence model is the standard $k-{\epsilon}$ model with enhanced wall functions. Also a additional simulation showed the film cooling characteristics that are resonable physically.