• Title/Summary/Keyword: near-field optics

Search Result 107, Processing Time 0.031 seconds

Near-field Optical Lithography for High-aspect-ratio Patterning by Using Electric Field Enhanced Postexposure Baking (전기장이 적용된 노광후굽기 공정에 의한 고종횡비 근접장 광 리소그래피)

  • Kim, Seok;Jang, Jin-Hee;Kim, Yong-Woo;Jung, Ho-Won;Hahn, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.241-246
    • /
    • 2010
  • In this paper, we propose an electric field enhanced postexposure baking (EFE-PEB) method to obtain deep and high aspect ratio pattern profile in near-field recording. To describe the photoacid distribution under an external electric field during the PEB, we derived the governing equations based on Fick's second law of diffusion. From the results of the numerical calculations, it is found that the vertical movement of photoacid increases while the lateral movement is stationary as electric field varies from 0 to $8.0{\times}10^6\;V/m$. Also, it is proven that the profile of near-field recording is improved by using the EFE-PEB method with increased depth, higher aspect ratio and larger sidewall angle.

Co-Fe-B 자왜변환기를 이용한 간섭계형 광섬유 자계센서의 동작특성

  • 이경식
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.474-479
    • /
    • 1993
  • An interferometric fiber-optic magnetic field sensor is constructed by bonding a Co-Fe-B metallic glass transducer developed here by the melt-spun method to a single mode fiber arm in the fiber Mach-Zehnder interferometer and is tested. The bias field for the peak ac-sensitivity was observed near 0.97 Oe and the minimum detectable magnetic field was 3.9${\times}10^{-5}$ Oe(rms)/${\sqrt{Hz}}$ a 3 kHz. The output of the ac field sensor becomes saturated near the input signal level of 1 Oe(rms). The Co- Fe-B transducer exhibits peak response near 500 Hz.

  • PDF

Colloidal Optics and Photonics: Photonic Crystals, Plasmonics, and Metamaterials

  • Jaewon Lee;Seungwoo Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.608-637
    • /
    • 2023
  • The initial motivation in colloid science and engineering was driven by the fact that colloids can serve as excellent models to study atomic and molecular behavior at the mesoscale or microscale. The thermal behaviors of actual atoms and molecules are similar to those of colloids at the mesoscale or microscale, with the primary distinction being the slower dynamics of the latter. While atoms and molecules are challenging to observe directly in situ, colloidal motions can be easily monitored in situ using simple and versatile optical microscopic imaging. This foundational approach in colloid research persisted until the 1980s, and began to be extensively implemented in optics and photonics research in the 1990s. This shift in research direction was brought by an interplay of several factors. In 1987, Yablonovitch and John modernized the concept of photonic crystals (initially conceptualized by Lord Rayleigh in 1887). Around this time, mesoscale dielectric colloids, which were predominantly in a suspended state, began to be self-assembled into three-dimensional (3D) crystals. For photonic crystals operating at optical frequencies (visible to near-infrared), mesoscale crystal units are needed. At that time, no manufacturing process could achieve this, except through colloidal self-assembly. This convergence of the thirst for advances in optics and photonics and the interest in the expanding field of colloids led to a significant shift in the research paradigm of colloids. Initially limited to polymers and ceramics, colloidal elements subsequently expanded to include semiconductors, metals, and DNA after the year 2000. As a result, the application of colloids extended beyond dielectric-based photonic crystals to encompass plasmonics, metamaterials, and metasurfaces, shaping the present field of colloidal optics and photonics. In this review we aim to introduce the research trajectory of colloidal optics and photonics over the past three decades; To elucidate the utility of colloids in photonic crystals, plasmonics, and metamaterials; And to present the challenges that must be overcome and potential research prospects for the future.

Depth-fused-type Three-dimensional Near-eye Display Using a Birefringent Lens Set

  • Baek, Hogil;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.524-529
    • /
    • 2020
  • We propose a depth-fused-type three-dimensional (3D) near-eye display implemented using a birefringent lens set that is made of calcite. By using a birefringent lens and image source (28.70 mm × 21.52 mm), which has different focal lengths according to the polarization state of the incident light, the proposed system can present depth-fused three-dimensional images at 4.6 degrees of field of view (FOV) within 1.6 Diopter (D) to 0.4 D, depending on the polarization distributed depth map. The proposed method can be applied to near-eye displays like head-mounted display systems, for a more natural 3D image without vergence-accommodation conflict.

Acceleration of the Iterative Physical Optics Using Graphic Processing Unit (GPU를 이용한 반복적 물리 광학법의 가속화에 대한 연구)

  • Lee, Yong-Hee;Chin, Huicheol;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.1012-1019
    • /
    • 2015
  • This paper shows the acceleration of iterative physical optics(IPO) for radar cross section(RCS) by using two techniques effectively. For the analysis of the multiple reflection in the cavity, IPO uses the near field method, unlike shooting and bouncing rays method which uses the geometric optics(GO). However, it is still far slower than physical optics(PO) and it is needed to accelerate the speed of IPO for practical purpose. In order to address this problem, graphic processing unit(GPU) can be applied to reduce calculation time and adaptive iterative physical optics-change rate(AIPO-CR) method is also applicable effectively to optimize iteration for acceleration of calculation.

Stability Enhancement of Super-RENS Readout Signal

  • Kim, Joo-Ho;Lee, Yong-Woon;Hwang, Wook-Yeon;Shima, Takayuki;Chung, Chong-Sam
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.123-125
    • /
    • 2007
  • We report the readout stability improvement results of super-resolution near field structure (Super-RENS) writeonce read-many (WORM) disk at a blue laser optical system. (Laser wavelength 405nm, numerical aperture 0.85) By using diffusion barrier structure (GeSbTe sandwiched by GeN) and high transition temperature recording material ($BaTiO_3$), material diffusion of phase change layer and recording mark degradation were greatly improved during high power (Pr=2.0mW) readout process up to $1{\times}10^5$ times.

  • PDF

New Fabrication Method of $Ti:LiNbO_3$ Waveguide with Suppressed Out-Diffusion ($Li_2O$의 삼출이 없는 $LiNbO_3$ 광도파로의 제조방법)

  • 김상혁;김상국;조재철;최상삼
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.149-152
    • /
    • 1991
  • We report a new method of fabricating a Ti:LiNb03 waveguide with no out-diffusion by coating the waveguide with $SiO_2$ thin film. It was coated before diffusion process, and the $LiO_2$ out-diffusion was prevented in the diffusion process. We compare the near field patterns of the guided modes between the typical waveguide and the waveguide fabricated by new method proposed here.

  • PDF

Theoretical Study of the Strong Field Emission of Electrons inside a Nanogap Due to an Enhanced Terahertz Field

  • Choi, Soo Bong;Byeon, Clare Chisu;Park, Doo Jae
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.508-513
    • /
    • 2018
  • We report the development of a theoretical model describing the strong field tunneling of electrons in an extremely small nanogap (having a width of a few nanometers) that is driven by terahertz-pulse irradiation, by modifying a conventional semiclassical model that is widely applied for near-infrared wavelengths. We demonstrate the effects of carrier-envelope phase difference and strength of the incident THz field on the tunneling current across the nanogap. Additionally, we show that the dc bias also contributes to the generation of tunneling current, but the nature of the contribution is completely different for different carrier-envelope phases.

Comparison of Accommodative Response among Emmetropes, Spectacle and Contact Lens Wearer (정시, 안경 및 콘택트렌즈 착용자의 조절반응량 비교)

  • Lee, Kyu-Byung;Park, Jeehyun;Kim, Hyojin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • Purpose: The purposes of this study are to investigate accommodative response among emmetropes, spectacle wearer and contact lens wearer, and correlation between refractive error and accommodative respons for each group. Methods: The 72 subjects(144 eyes) who do not have any ocular diseases were participate in this study. Subjects were categorized into emmetropes, spectacle wearer and contact lens wearer by refractive error using closed-field auto-refractometer. We measured dominant eye, naked/habitual visual acuity and refractive error of monocular/binocular vision of refractive error for far/near distance with open-field auto-refractometer and calculated accommodative lag. Results: There were no significant difference of accommodative lag between right and left eye dominant and non-dominant eye, monocular and binocular vision, and spectacle lens wearer and contact lens wearer, However the accommodative lag of binocular vision was severe than monocular vision at near. The lag of myopia was larger than emmetropes, and male was larger than female. Significant correlation was found between refractive error and accommodative lag in total subjects and the same result was found in emmetropes and contact lens wearer. However there were no significant correlation in the spectacle wearer. Conclusions: There were significant difference between emmetrops and myopes in terms of accommodative lag, however accommodative lag of spectacle wearer was not different with contact lens wearer in myopes. There were also significant correlation between refractive error and accommodative lag in emmetropes and contact lens wearer, but the accommodative lag of spectacle wearer was not significantly correlated with refractive error.

Characterization of optical waveguides with near - field scanning optical microscope (근접장 주사 광학현미경을 이용한 광 도파로 특성 연구)

  • Ji, Won-Soo;Kim, Dae-Chan;Lee, Seung-Gol;O, Beom-Hoan;Lee, El-Hang
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • The propagation characteristic of an optical waveguide was investigated by measuring with a near-field scanning optical microscope (NSOM) the evanescent field formed at the neighbor of its core-cladding interface. For this purpose, the NSOM system was developed specially as a form of Photon scanning tunneling microscope. The evanescent field distributions of several channel waveguides were measured at the wavelength of 1550 ㎚, and the usefulness of the system was verified by comparing experimental results with simulation results. In particular, the interference phenomena of the guided modes during their propagation along a multimode channel waveguide could be observed directly from the measured evanescent field distribution.