• Title/Summary/Keyword: near-fault earthquakes

Search Result 107, Processing Time 0.025 seconds

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Effectiveness of design procedures for linear TMD installed on inelastic structures under pulse-like ground motion

  • Quaranta, Giuseppe;Mollaioli, Fabrizio;Monti, Giorgio
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.239-260
    • /
    • 2016
  • Tuned mass dampers (TMDs) have been frequently proposed to mitigate the detrimental effects of dynamic loadings in structural systems. The effectiveness of this protection strategy has been demonstrated for wind-induced vibrations and, to some extent, for seismic loadings. Within this framework, recent numerical studies have shown that beneficial effects can be achieved by placing a linear TMD on the roof of linear elastic structural systems subjected to pulse-like ground motions. Motivated by these positive outcomes, closed-form design formulations have been also proposed to optimize the device's parameters. For structural systems that undergo a near-fault pulse-like ground motion, however, it is unlikely that their dynamic response be linear elastic. Hence, it is very important to understand whether such strategy is effective for inelastic structural systems. In order to provide new useful insights about this issue, the paper presents statistical results obtained from a numerical study conducted for three shear-type hysteretic (softening-type) systems having 4, 8 and 16 stories equipped with a linear elastic TMD. The effectiveness of two design procedures is discussed by examining the performances of the protected systems subjected to 124 natural pulse-like earthquakes.

Control of Smart Base-isolated Benchmark Building using Fuzzy Supervisory Control (퍼지관리제어기법을 이용한 스마트 면진 벤치마크 건물의 제어)

  • Kim, Hyun-Su;Roschke P. N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.55-66
    • /
    • 2005
  • The effectiveness of fuzzy supervisory control technique for the control of seismic responses of smart base isolation system is investigated in this study. To this end, first generation base isolated building benchmark problem is employed for the numerical simulation. The benchmark structure under consideration is an eight-story base isolated building having irregular plan and is equipped with low-damping elastometric bearings and magnetorheological (MR) dampers for seismic protection. Lower level fuzzy logic controllers (FLC) for far-fault or near-fault earthquakes are developed in order to effectively control base isolated building using multi-objective genetic algorithm. Four objectives, i.e. reduction of peak structural acceleration, peak base drift, RMS structural acceleration and RMS base drift, are used in multi-objective optimization process. When earthquakes are applied to benchmark building, each of low level FLCs provides different command voltage and supervisory fuzzy controller combines two command voltages io one based on fuzzy inference system in real time. Results from the numerical simulations demonstrate that base drift as well as superstructure responses can be effectively reduced using the proposed supervisory fuzzy control technique.

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.

Seismic performance evaluation of steel moment resisting frames with mid-span rigid rocking cores

  • Ali Akbari;Ali Massumi;Mark Grigorian
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.621-635
    • /
    • 2023
  • The combination of replaceable and repairable properties in structures has introduced new approach called "Low Damage Design Structures". These structural systems are designed in such a way that through self-centering, primary members and specific connections neither suffer damage nor experience permanent deformations after being exposed to severe earthquakes. The purpose of this study is the seismic assessment of steel moment resisting frames with the aid of rigid rocking cores. To this end, three steel moment resisting frames of 4-, 8-, and 12-story buildings with and without rocking cores were developed. The nonlinear static analysis and incremental dynamic analysis were performed by considering the effects of the vertical and horizontal components of 16 strong ground motions, including far-fault and near-fault arrays. The results reveal that rocking systems benefit from better seismic performance and energy dissipation compared to moment resisting frames and thus structures experience a lower level of damage under higher intensity measures. The analyses show that the interstory drift in structures equipped with stiff rocking cores is more uniform in static and dynamic analyses. A uniform interstory drift distribution leads to a uniform distribution of the bending moment and a reduction in the structure's total weight and future maintenance costs.

Combined resonant column and cyclic triaxial tests to estimate the dynamic behavior of undisturbed saturated clayey soils of Adapazarı, Turkey

  • Ersin Guler;Kamil Bekir Afacan
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.243-259
    • /
    • 2023
  • Turkey is one of the most important earthquake regions in Europe. This region has been exposed to many earthquakes of different magnitudes from past to present. It is of great importance to determine the dynamic properties of the soils for structures to be built in earthquake zones. In order to minimize the damages that may occur, the behavior of the soils under repeated loads should be known and taken into consideration in the design. In this study, 4 different point borings were taken near active fault lines in the North Anatolian fault zone (NAFZ). In order to determine the dynamic parameters of soils, both dynamic triaxial (TRX) and resonant column (RC) tests were carried out on undisturbed samples at every 5 m. As a result of the experiments, Vs and Gmax values were obtained from the field and differences were determined. The dynamic behavior of the soil was examined at varying depths with the comparison of reference models in the literature and compatible results were obtained. Finally, the behavior at the transition region is highlighted. As a result, three shear modulus and dumping ratio models have been proposed for clay soils to be used in different soil conditions.

Seismic Design of Structures in Low Seismicity Regions

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

A Case Study on the Design of Tunnel Excavation in Geological Anomalies (터널굴착시 지질이상대 통과방안 설계사례 연구)

  • Yoo, Joung-Hoon;Kim, Yang-Kyun;Chung, Chul-Hwa
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.341-348
    • /
    • 2011
  • As a result of the detailed site investigation performed for the design of a 4.3 km long tunnel, geological anomalies of four fault zones and a rock boundary were discovered on the tunnel route. Most of all, it was confirmed that pyrite, which may corrode steel material, is contained inside the geological anomalies, and pressured ground water flows out of the fault fractured zone. To overcome these geological conditions, antisulfur concrete for the concrete lining and anticorrosive swelling rock bolts are designed in the pyrite-containing sections. For the sections where a great amount of groundwater outflows, water blocking methods including grouting are applied according to the result of numerical analyses on the seepage. In addition, since the past earthquakes occurred around Korea have take place mainly near fault zones, seismic analyses were performed based on the Soil-Structure Interaction (SSI) concept and the strength of concrete tunnel lining is designed to be 27 MPa from 24 MPa in order to reinforce the tunnel structure.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

Evaluation of Seismic Responses for Building in Moderate Seismicity Regions Considered Vertical Earthquake Ground Motions (지진지반운동의 수직성분을 고려한 증진지역 건축구조물의 지진응답평가)

  • Han, Duck-Jeon;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2009
  • Recent earthquake, such as the Northridge(1994), the Kobe(1995) and the Izmit(1990) earthquakes, gave serious damage in various buildings and bridges by the vertical seismic component. Most of the seismic designs neglect the vertical seismic component for usual frame structures. The purpose of this study is to evaluate the effects of the vertical seismic component and to compare the axial force of columns and plastic rotation angle of the analytical models in these effects. The vertical seismic component produced a large increment of axial force in columns. And the vertical seismic component caused a significant increase of the damage in the columns. As analysis result, increase of axial force cause the damage of columns and give possibility of story collapse mechanism of the structure system. Therefore, area that near fault ground motion is expected may be consider the effect of vertical component of seismic ground motions.

  • PDF