DOI QR코드

DOI QR Code

Seismic performance evaluation of steel moment resisting frames with mid-span rigid rocking cores

  • Ali Akbari (Department of Civil Engineering, Faculty of Engineering, Kharazmi University) ;
  • Ali Massumi (Department of Civil Engineering, Faculty of Engineering, Kharazmi University) ;
  • Mark Grigorian (MGA Structural Engineering Consultants Inc.)
  • Received : 2022.07.26
  • Accepted : 2023.02.13
  • Published : 2023.03.10

Abstract

The combination of replaceable and repairable properties in structures has introduced new approach called "Low Damage Design Structures". These structural systems are designed in such a way that through self-centering, primary members and specific connections neither suffer damage nor experience permanent deformations after being exposed to severe earthquakes. The purpose of this study is the seismic assessment of steel moment resisting frames with the aid of rigid rocking cores. To this end, three steel moment resisting frames of 4-, 8-, and 12-story buildings with and without rocking cores were developed. The nonlinear static analysis and incremental dynamic analysis were performed by considering the effects of the vertical and horizontal components of 16 strong ground motions, including far-fault and near-fault arrays. The results reveal that rocking systems benefit from better seismic performance and energy dissipation compared to moment resisting frames and thus structures experience a lower level of damage under higher intensity measures. The analyses show that the interstory drift in structures equipped with stiff rocking cores is more uniform in static and dynamic analyses. A uniform interstory drift distribution leads to a uniform distribution of the bending moment and a reduction in the structure's total weight and future maintenance costs.

Keywords

References

  1. ASCE (2016), ASCE Standard-ASCE/SEI 7-16 Minimum Design Loads for Buildings and Other Structures, Reston, VA American Society of Civil Engineers (ASCE).
  2. Abdolahi Rad, A. (2017), Seismic Ratcheting of Steel Low-Damage Buildings, University of Canterbury.
  3. Blebo, F.C. and D.A. Roke. (2018), "Seismic-resistant self-centering rocking core system with buckling restrained columns", Eng. Struct., 173, 372-382. https://doi.org/10.1016/j.engstruct.2018.06.117.
  4. Blomgren, H.E., Pei, S., Jin, Z., Powers, J., Dolan, J.D., Van de Lindt, J.W. and Huang, D. (2019), "Full-scale shake table testing of cross-laminated timber rocking shear walls with replaceable components" , J. Struct. Eng., 145(10), 04019115. https://doi.org/10.1061/(asce)st.1943-541x.0002388.
  5. Clough, R.W. and A.A. Huckelbridge. (1977), "Preliminary experimental study of seismic uplift of a steel frame", Earthq. Eng. Res. Cent., Report No. UCB/EERC-77/22 Earthquake Engineering Research Center, College of Engineering, University of California.
  6. Code, U.B. (1997), "Structural engineering design provisions", Int. Conf. Build. Off.
  7. Elettore, E., Freddi, F., Latour, M. and Rizzano, G. (2021), "Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases", J. Constr. Steel Res., 179, 106543. https://doi.org/10.1016/j.jcsr.2021.106543.
  8. Grigorian, M. (2021), "Resiliency and post-earthquake realignment", Struct. Des. Tall Spec. Build., 30(5), https://doi.org/10.1002/tal.1836.
  9. Grigorian, M. and C. Grigorian. (2016), "An introduction to the structural design of rocking wall-frames with a view to collapse prevention, self-alignment and repairability", Struct. Des. Tall Spec. Build., 25(2), 93-111. https://doi.org/10.1002/tal.1230.
  10. Grigorian, M., Moghadam, A.S. and Mohammadi, H. (2017), "Advances in rocking core-moment frame analysis" , Bull. Earthq. Eng., 15(12), 5551-5577. https://doi.org/10.1007/s10518-017-0177-8.
  11. Grigorian, M., Moghadam, A.S., Mohammadi, H. and Kamizi, M. (2018), "Methodology for developing earthquake-resilient structures", Struct. Des. Tall Spec. Build., 28(2), e1571. https://doi.org/10.1002/tal.1571.
  12. Gupta, A. and Krawinkler, H. (1999), Seismic Demands for Performance Evaluation of Steel , John A. Blume Earthq. Eng. Cent. Tech. Rep. Ser. Stanford University.
  13. Hajjar, J.F., Sesen, A.H., Jampole, E. and Wetherbee, A. (2013), "A synopsis of sustainable structural systems with rocking, self-centering, and articulated energy-dissipating fuses", J. Earthq. Eng., 10(1), 45-66.
  14. Housner, G.W. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 403-417. https://doi.org/10.1017/CBO9781107415324.004.
  15. Hu, S., Wang, W., Alam, M.S. and Qu, B. (2021), "Performance-based design of self-centering energy-absorbing dual rocking core system", J. Constr. Steel Res., 181, 106630. https://doi.org/10.1016/j.jcsr.2021.106630.
  16. Hu, X., Lu, Q. and Y. Yang. (2018), "Rocking response analysis of self-centering walls under ground excitations", Math. Probl. Eng., 1-12. https://doi.org/10.1155/2018/4371585.
  17. Kafaeikivi, M., Roke, D.A. and Huang, Q. (2016), "Seismic performance assessment of self-centering dual systems with different configurations", Structures, 5, 88-100. https://doi.org/10.1016/j.istruc.2015.09.004.
  18. Li, J., Wang, W. and Qu. B. (2020), "Seismic design of low-rise steel building frames with self-centering panels and steel strip braces", Eng. Struct., 216, 110730. https://doi.org/10.1016/j.engstruct.2020.110730.
  19. Li, Z., Chen, F., He, M., Zhou, R., Cui, Y., Sun, Y. and He, G. (2021), "Lateral performance of self-centering steel-timber hybrid shear walls with slip-friction dampers: experimental investigation and numerical simulation", J. Struct. Eng., 147(1), 04020291. https://doi.org/10.1061/(asce)st.1943-541x.0002850.
  20. Lin, C.P., Wiebe, R. and Berman, J.W. (2019), "Analytical and numerical study of curved-base rocking walls", Eng. Struct., 197, 109397. https://doi.org/10.1016/j.engstruct.2019.109397.
  21. Lu, X., Dang, X., Qian, J., Zhou, Y. and Jiang, H. (2017), "Experimental study of self-centering shear walls with horizontal bottom slits", J. Struct. Eng., 143(3), 04016183. https://doi.org/10.1061/(asce)st.1943-541x.0001673.
  22. Massumi, A., Karimi, N. and Ahmadi, M. (2018), "Effects of openings geometry and relative area on seismic performance of steel shear walls", Steel Compos. Struct., 28(5), 617-628. https://doi.org/10.12989/scs.2018.28.5.617.
  23. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacific Earthq. Eng. Res. Cent., 264, 451.
  24. Mohammadi, M.H., Massumi, A. and Meshkat-Dini. A. (2017), "Performance of RC moment frames with fixed and hinged supports under near-fault ground motions", Earthq. Struct., 13(1), 89-101. https://doi.org/10.12989/eas.2017.13.1.089.
  25. Paulay, T. and Priestley. M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley New York.
  26. Pekelnicky, R. and Poland. C. (2012), "ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings", SEAOC 2012 Conv. Proc.
  27. Piri, M. and Massumi. A. (2022), "Seismic performance of steel moment and hinged frames with rocking shear walls", J. Build. Eng., 50, 104121. https://doi.org/10.1016/J.JOBE.2022.104121.
  28. Qu, B., Sanchez, J.C., Hou, H. and Pollino, M. (2016), "Improving inter-story drift distribution of steel moment resisting frames through stiff rocking cores", Int. J. Steel Struct., 16(2), 547-557. https://doi.org/10.1007/s13296-016-6023-z.
  29. Restrepo, J.I., Mander, J. and Holden, T.J. (2001), "New generation of structural systems for earthquake resistance", New Zeal. Soc. Earthq. Eng. 2001 Conf., 1-9.
  30. American Society of Civil Engineers (2017), Seism. Eval. Retrofit Exist. Build. Seismic evaluation and retrofit of existing buildings
  31. Takeuchi, T., Chen, X. and Matsui, R. (2015), "Seismic performance of controlled spine frames with energy-dissipating members", J. Constr. Steel Res., 114, 51-65. https://doi.org/10.1016/j.jcsr.2015.07.002.
  32. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. Wiley Online Library. https://doi.org/10.1002/eqe.141
  33. Vamvatsikos, D. and Cornell, C.A. (2004), "Applied incremental dynamic analysis", Earthq. Spectra, 20(2), 523-553. https://doi.org/10.1193/1.1737737.
  34. Wang, J. and Zhao. H. (2018), "High performance damage-resistant seismic resistant structural systems for sustainable and resilient city: a review", Shock Vib., https://doi.org/10.1155/2018/8703697.
  35. Wu, D., Lu, X. and Zhao, B. (2019), "Parametric study of rocking cores-moment frames with supplemental viscous damping and self-centering devices using a distributed parameter model", Soil Dyn. Earthq. Eng., 123, 304-319. https://doi.org/10.1016/j.soildyn.2019.04.034.
  36. Xie, Q., Zhou, Z. and Meng, S.P. (2020), "Experimental investigation of the hysteretic performance of self-centering buckling-restrained braces with friction fuses", Eng. Struct., 203, 109865. https://doi.org/10.1016/j.engstruct.2019.109865.