• Title/Summary/Keyword: near target

Search Result 598, Processing Time 0.027 seconds

Infrared Target Extraction Using Weighted Information Entropy and Adaptive Opening Filter

  • Bae, Tae Wuk;Kim, Hwi Gang;Kim, Young Choon;Ahn, Sang Ho
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1023-1031
    • /
    • 2015
  • In infrared (IR) images, near targets have a transient distribution at the boundary region, as opposed to a steady one at the inner region. Based on this fact, this paper proposes a novel IR target extraction method that uses both a weighted information entropy (WIE) and an adaptive opening filter to extract near finely shaped targets in IR images. Firstly, the boundary region of a target is detected using a local variance WIE of an original image. Next, a coarse target region is estimated via a labeling process used on the boundary region of the target. From the estimated coarse target region, a fine target shape is extracted by means of an opening filter having an adaptive structure element. The size of the structure element is decided in accordance with the width information of the target boundary and mean WIE values of windows of varying size. Our experimental results show that the proposed method obtains a better extraction performance than existing algorithms.

Target Adaptive Guidance Using Near-Zone Information from IR Seeker (근접영역에서의 IR 탐색기 정보를 이용한 표적적응유도)

  • 엄태윤;김필성
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2002
  • A target adaptive guidance(TAG) algorithm is proposed employing the near-zone signal that can be measured from an infrared seeker. The guidance order is composed of a conventional PNG command and an additional command to be calculable from an additional LOS rate between a hot point of target and a required intercept point. The characteristic of the near-zone signal is similar to that of LOS rate that is inversely proportional to the square of time-to-go. Hence the proposed scheme can be applied to real systems with no estimator for time-to-go. From analysis results on the miss distance with perfect missile and perfect seeker, it follows that the proposed TAG algorithm guarantees missile to be ideally guided to the required intercept point. And it is less affected by the TAG start time and a proportional navigation ratio than other TAG schemes using a LOS rate such as a step bias or a ramp bias.

Analysis of the Square Beam Energy Efficiency of a Homogenizer Near the Target for Laser Shock Peening

  • Kim, Taeshin;Hwang, Seungjin;Hong, Kyung Hee;Yu, Tae Jun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.407-412
    • /
    • 2016
  • We analyzed through numerical simulations the properties of a square beam homogenizer near the target for laser shock peening. The efficiency was calculated near the target by considering the plasma threshold of the metals. We defined the depth of focus of the square beam homogenizer with a given efficiency near the target. Then, we found the relationship between the depth of focus for the laser shock peening and four main parameters of the square beam homogenizer: the plasma threshold of the metal, the number of lenslets in the array-lens, the focal length of the condenser lens and the input beam size.

Near-field Target Localization Using Bottom-mounted Linear Sensor Array in Multipath Environment (다중경로환경에서 바닥고정형 선배열센서를 이용한 근거리표적의 위치추정기법)

  • 이수형;류창수;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, we propose a near-field target localization algorithm using a bottom-mounted linear sensor amy in a multipath environment. In a multipath environment, the conic angles of a target signals through each path are different, and the position of the target can be estimated using these conic angles and the time difference of these signals. We derive equations on the relation of time-difference of signals and conic angles estimates under the far-field assumption, and estimate the position of target by simultaneously solving these equations. For a certain geometry of a target and the sensor array, there exist cases when the conic angles are very close. In such a case, we estimate the position of the target using an additional 1-D search.

  • PDF

Shape Extraction of Near Target Using Opening Operator with Adaptive Structure Element in Infrared hnages (적응적 구조요소를 이용한 열림 연산자에 의한 적외선 영상표적 추출)

  • Kwon, Hyuk-Ju;Bae, Tae-Wuk;Kim, Byoung-Ik;Lee, Sung-Hak;Kim, Young-Choon;Ahn, Sang-Ho;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.546-554
    • /
    • 2011
  • Near targets in the infrared (IR) images have the steady feature for inner region and the transient feature for the boundary region. Based on these features, this paper proposes a new method to extract the fine target shape of near targets in the IR images. First, we detect the boundary region of the candidate targets using the local variance weighted information entropy (WIE) of the original images. And then, a coarse target region can be estimated based on the labeling of the boundary region. For the coarse target region, we use the opening filter with an adaptive structure element to extract the fine target shape. The decision of the adaptive structure element size is optimized for the width information of target boundary by calculating the average WIE in the enlarged windows. The experimental results show that a proposed method has better extraction performance than the previous threshold algorithms.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Efficient rate control algorithm for video near-lossless compression (비디오 준무손실 압축을 위한 효율적인 레이트 컨트롤 알고리즘)

  • Joh, Beom Seok;Kim, Young Ro
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.11-17
    • /
    • 2010
  • In this paper, we propose efficient rate control algorithm for video near-lossless compression. The proposed method adjusts pixel error range using amounts of previous encoded bits and target bits at a slice encoding interval. Thus, encoded bits by the proposed method are transmitted well through limited bandwidth without overflow. Also, target bits and encoded bits can be controlled according to transmission policy. Experimental results show that our proposed method not only almost fits compression ratio, but also has better image quality.

Multiple Target Position Tracking Algorithm for Linear Array in the Near Field (선배열 센서를 이용한 근거리 다중 표적 위치 추적 알고리즘)

  • Hwang Soo-Bok;Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.294-300
    • /
    • 2005
  • Generally, traditional approaches to track the target position are to estimate ranges and bearings by 2-D MUSIC (MUltiple 519na1 Classification) method. and to associate estimates of 2-D MUSIC made at different time points with the right targets by JPDA (Joint Probabilistic Data Association) filter in the near field. However, the disadvantages of these approaches are that these have the data association Problem in tracking multiple targets. and that these require the heavy computational load in estimating a 2-D range/bearing spectrum. In case multiple targets are adjacent. the tracking performance degrades seriously because the estimate of each target's Position has a large error. In this paper, we proposed a new tracking algorithm using Position innovations extracted from the senor output covariance matrix in the near field. The proposed algorithm is demonstrated by the computer simulations dealing with the tracking of multiple closing and crossing targets.

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

An Analysis of Error Components and Uncertainties in Near-field RCS Measurement (근전계 RCS 측정 오차 요인 및 불확도 분석)

  • Seo, Mingyeong;Tae, Hyunsung;Kim, Jeongkyu;Park, Homin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.346-354
    • /
    • 2020
  • Nowadays, it is required to apply low observable technology to weapon systems in operation or under development. Radar Cross Section(RCS) is a measure of the scattered power in an given direction when a target is illuminated by an incident wave and used as a parameter to estimate the low observable performance of weapon system. RCS of a target can be calculated by various numerical methods. However, measurement is also needed to estimate RCS of a complex target because it is difficult to estimate theoretically. To acquire reliable measurement results, an analysis of measurement uncertainty is essential. In this paper, error components and uncertainties of near-field RCS measurement system which was constructed in ASTEC(Aerospace System Test & Evaluation Center) were analyzed based on the IEEE recommended practice for radar cross-section test procedures(IEEE Std. 1502-2007) which describes the uncertainty of RCS measurement and unique error components of this near-field measurement system were also identified.