• Title/Summary/Keyword: near field scanning

Search Result 161, Processing Time 0.026 seconds

Developing a Cantilever-type Near-field Scanning Optical Microscope Using a Single Laser for Topography Detection and Sample Excitation

  • Ng'ang'a, Douglas Kagoiya;Ali, Luqman;Lee, Yong Joong;Byeon, Clare Chisu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • The capabilities of the near-field scanning optical microscope (NSOM) for obtaining high resolution lateral topographical images as well as for mapping the spectroscopic and optical properties of a sample below the diffraction limit of light have made it an attractive research field for most researchers dealing with optical characteristics of materials in nano scales. The apertured NSOM technique involves confining light into an aperture of sub-wavelength size and using it to illuminate a sample maintained at a distance equal to a fraction of the sub-wavelength aperture (near-field region). In this article, we present a setup for developing NSOM using a cantilever with a sub-wavelength aperture at the tip. A single laser is used for both cantilever deflection measurement and near-field sample excitation. The laser beam is focused at the apex of the cantilever where a portion of the beam is reflected and the other portion goes through the aperture and causes local near-field optical excitation of the sample, which is then raster scanned in the near-field region. The reflected beam is used for an optical beam deflection technique that yields topographical images by controlling the probe-sample in nano-distance. The fluorescence emissions signal is detected in far-field by the help of a silicon avalanche photodiode. The images obtained using this method show a good correlation between the topographical image and the mapping of the fluorescence emissions.

Design of low-cost near-field system using circular cylindrical scanning (원통주사법을 이용한 저비용 근역장 시스템 설계)

  • Ryu, Hong-Kyun;Song, Jin-Woo;Im, Young-Hoon;Cho, Yong-Heui
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • In this paper, we propose a low-cost near-field measurement system using a circular cylindrical scanning formula in order to obtain the radiation pattern of an AUT (Antenna Under Test). Near-field measurement is performed with the improved circular cylindrical scanning based on a planar scanning. We propose a novel method that replaces a network analyzer and we also offer the specifications of the near-field measurement system.

  • PDF

Investigation of dark spots in OLEDs by using a near-field scanning microwave microscope (유기 발광소자내 dark spot의 마이크로파 근접장 현미경(near-field scanning microwave microscope)을 이용한 연구)

  • Yun, Soon-Il;Park, Mi-Hwa;Yoo, Hyeon-Jun;Lim, Eun-Ju;Kim, Joo-Young;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.984-987
    • /
    • 2003
  • 유기발광소자 안에 존재하는 비발광영역(dark spot)의 전압에 대한 영향을 근접장 마이크로파 현미경(near-field scanning microwave microscope)을 이용하여 관찰하였다. 유기발광소자는 glass/indiumtin oxide(ITO)/Cu-Pc/tris-(8-hydroquinoline)aluminum(Alq3)/aluminum(Al) 의 기본구조로 제작하였다. Dark spot은 ITO 기판을 부분적으로 에칭하여서 형성시켰다. Dark spot에 $0{\sim}l5 V$ 까지 전압을 인가시키면서 인가 전압에 따른 전기적 특성을 근접장 마이크로파 현미경 image의 변화와 반사계수인 $S_{11}$ 측정을 통하여 연구하였다.

  • PDF

Investigation of dark spots in OLEDs by using a near-field scanning microwave microscope (유기 발광소자내 dark spot의 마이크로파 근접장 현미경(near-field scanning microwave microscope)을 이용한 연구)

  • Yun, Soon-Il;Park, Mi-Hwa;Yoo, Hyeon-Jun;Lim, Eun-Ju;Kim, Joo-Young;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.147-150
    • /
    • 2003
  • 유기발광소자 안에 존재하는 비발광영역(dark spot)의 전압에 대한 영향을 근접장 마이크로파 현미경(near-field scanning microwave microscope)을 이용하여 관찰하였다. 유기발광소자는 glass/indiumtin oxide(ITO)/Cu-Pc/tris-(8-hydroquinoline)aluminum(Alp3)/aluminum(Al)의 기본구조로 제작하였다. 비발광영역은 ITO 기판을 부분적으로 에칭하여서 형성시켰다. Dark spot에 0~15V 전압을 인가시키면서 인가 전압에 따른 dark spot 구조적 및 전기적 특성을 근접장 마이크로파 현미경 Image의 변화와 반사계수인 $S_11$측정을 통하여 연구하였다.

  • PDF

Investigation of dark spots in organic light emitting diodes by using a near-field scanning microwave microscope (마이크로파 근접장 현미경을 이용한 유기 발광소자내 dark spot 연구)

  • Yun, Soon-Il;Yoo, Hyun-Jun;Park, Mi-Hwa;Kim, Song-Hui;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.494-497
    • /
    • 2003
  • We report the dark spots in organic light emitting diodes by using a near-field scanning microwave microscope. Devices structure was glass / indium-tin-oxide(ITO) / copper-pthalocyiane(Cu-Pc) / tris-(8-hydroquinoline)aluminum(Alq3) / aluminum(Al). We made artificial dark spots by using a etching technique on a ITO substrate. Near-field scanning microwave microscope images and reflective coefficient of dark spots were measured and compared by the change of various applied voltage changes 0-15V.

  • PDF

Theoretical and Experimental Investigation on the Probe Design of a Ridge-loaded Slot Type for Near-Field Scanning Microwave Microscope

  • Son, Hyeok-Woo;Kim, Byung-Mun;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2120-2125
    • /
    • 2015
  • In this paper, a rectangular waveguide probe with a ridge-loaded straight slot (RLSS) is presented for a near-field scanning microwave microscope (NSMM). The RLSS is located laterally at the end wall of the cavity and is loaded on double ridges in a narrow straight slot to improve the spatial resolution compared with a straight slot. The probe consists of a rectangular cavity with an RLSS and a feed section of a WR-90 rectangular waveguide. When the proposed NSMM is located at distance of 0.1mm in front of a substrate without patches or strips, the simulated full width at half maximum (FWHM) of the probe improve by approximately 31.5 % compared with that of a straight slot without ridges. One dimensional scanning of the E-plane on a sample under test was conducted, and the reflection coefficient of the near-field scanning probe is presented.

Fabrication of Microcantilever Ultrasound Sensor and Its Application to the Scanning Laser Source Technique

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.459-466
    • /
    • 2005
  • The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking defects, By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods, An extension of the SLS approach to map defects in microdevices is proposed by bringing both the generator and the receiver to the near-field scattering region of the defects, To facilitate near-field ultrasound measurement, silicon microcantilever probes are fabricated using microfabrication technique and their acoustical characteristics are investigated, Then, both the laser-generated ultrasonic source and the microcantilever probe are used to monitor near-field scattering by a surface-breaking defect.

Polarization State of Scattered Light in Apertureless Reflection-mode Scanning Near-Field Optical Microscopy

  • Cai, Yongfu;Aoyagi, Mitsuharu;Emoto, Akira;Shioda, Tatsutoshi;Ishibashi, Takayuki
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.317-320
    • /
    • 2013
  • We studied the polarization state in an apertureless scanning near-field microscopy (a-SNOM) operating in reflection mode by using three-dimensional Finite-difference Time-domain (FDTD) method. As a result, the electric field around tip apex in the near-field region enhanced four times stronger than the incident light for ppolarization when the tip-sample separation was 10 nm. We find that the p- and s-polarization state is maintained for the scattered light when the probe is perpendicular to the sample. When the probe is not perpendicular to the sample, the polarization state of scattered light will rotate an angle that equals to the inclination angle of probe with p-polarization illumination. On the other hand, the polarization state will not rotate with s-polarization illumination.

Measurement of surface plasmon using near-field scanning optical microscope (근접장 주사 광학 현미경을 이용한 표면 플라즈몬의 측정)

  • 고선아;이관수;박승룡;윤재웅;송석호;김필수;오차환
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.51-55
    • /
    • 2004
  • Surface plasmons (SPs) are charge density oscillations that propagate along an interface between a dielectric and metal. In this paper, the electric field of SPs and the intereference of two SPs are observed by using Near-field Scanning Optical Microscope (NSOM). The excitation condition of SPs is changed as the optical tip approaches the metal surface, because the excitation condition of SPs is very sensitive to surface structures. To measure the microscope field of SPs, the distance between metal surface and optical tip must contain a specific interval.

Nondestructive measurement of sheet resistance of indium tin oxide(ITO) thin films by using a near-field scanning microwave microscope (근접장 마이크로파 현미경을 이용한 ITO 박막 면저항의 비파괴 관측 특성 연구)

  • Yun, Soon-Il;Na, Sung-Wuk;Yun, Young-Wun;You, Hyun-Jun;Lee, Yeong-Joo;Kim, Hyun-Jung;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.522-525
    • /
    • 2004
  • ITO thin films $({\sim}150\;nm)$ are deposited on glass substrates by different deposition condition. The sheet resistance of ITO thin films measured by using a four probe station. The microstructure of these films is determined using a X-ray diffractometer (XRD) and a scanning electron microscope (SEM) and a atomic force microscope (AFM). The sheet resistance of ITO thin films compared $s_{11}$ values by using a near field scanning microwave microscope.

  • PDF