• Title/Summary/Keyword: near and far-field

Search Result 407, Processing Time 0.027 seconds

An Experimental Study on the Impulse Wave Discharged from the Exit of a Perforated Pipe (다공관 출구로부터 방출되는 펄스파에 관한 실험적 연구)

  • 허성욱;이동훈;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • The propagation characteristics of the impulse wave discharged from the exit of a perforated pipe is investigated through a simple shock tube facility. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the shock tube experiments, the impulse wave are visualized by a Schlieren optical system for the purpose of understanding its propagation characteristics. The experimental results show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. Especially, it is shown that the perforated pipe has a little performance to reduce the impulse noise only for the near sound field

  • PDF

Development of the Near/Far Absolute Gain Measurement System Using an Extrapolation Technique (외삽기법을 이용한 안테나의 원 ${\cdot}$ 근역장 절대이득 측정시스템 개발)

  • Shin, Joon;Kang, Chan-Koo;Kim, Jeong-Hwan;Chung, Nak-Sam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.31-38
    • /
    • 1990
  • An antenna gain measurement system using an extrapolation technique is described. The technique is similar to the usual two-antenna method for absolute gain measurement system, but involves the measurement of the received signal as a function of seperation in short distances, and the signal-versus-seperation data is processed in a way that allows an extrapolation of the signal to "infinite" seperation. In this technique it is possible to obtain the near field gain as function of distance by combining the far field gain and a proximity correction factor. The results of gain measurements of standard gain horn antennas and OEG (open ended waveguide) antennas are also presented.

  • PDF

Near field acoustic source localization using beam space focused minimum variance beamforming (빔 공간 초점 최소 분산 빔 형성을 이용한 근접장 음원 위치 추정)

  • Kwon, Taek-Ik;Kim, Ki-Man;Kim, Seongil;Ahn, Jae-kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.100-107
    • /
    • 2017
  • The focused MVDR (Minimum Variance Distortionless Response) can be applied for source localization in near field. However, if the number of sensors are increased, it requires a large amount of calculation to obtain the inverse of the covariance matrix. In this paper we propose a focused MVDR method using that beam space is formed from output of far field beamformer at the subarray. The performances of the proposed method was evaluated by simulation. As a result of simulation, the proposed method has the higher spatial resolution performance then the conventional delay-and-sum beamformer.

CAVITY OF CREATION FOR COLD FUSION AND GENERATION OF HEAT

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.3-12
    • /
    • 1996
  • Cold fusion technologies now are being developed very successfully. The $\pi$-far infrared rays are generated from three dimensional crystallizing $\pi$-bondings of oxygen atoms in water molecules. The growing cavity in water molecules make near resonance state and a vortex of infrared rays and attracts $\pi$-far infrared rays in the water. The cavity surrounded by a lot of $\pi$-far infrared rays has a very strong gravitational field. The $\pi$-far infrared rays are contracted into $\pi$-far infrared rays of half wave length and of one wave length. The $\pi$-far infrared rays of half wave length generate heat while $\pi$-far infrared rays of one wave length are contracted into $\pi$-gamma rays of one wave length. The contracted $\pi$-gamma rays of one wave length make nucleons and mesons, which is the creation and transmutation of matter by covalent bondings and three-dimensional crystallizing $\pi$-bondings into implosion bonding. Patterson power cell generates a very strong gravitational cavity because the electrolysized oxygen atoms make $\pi$-far infrared rays than in plain water.

  • PDF

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (해석적 주파수종속 무한요소를 사용한 시간영역해석의 지반-구조물의 상호작용을 고려한 지진해석)

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.121-128
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far field soil. The dynamic stiffness matrices of the far field region formulated using the present method in frequency domain can be easily transformed into the corresponding matrices in time domain. At first, the equivalent earthquake forces are evaluated along the interface between the near and the far fields from the free-field response analysis carried out in frequency domain, and the results are transformed into the time domain. An efficient procedure is developed for the convolution integrals to evaluate the interaction force along the interface, which depends on the response on the interface at the past time instances as well as the concurrent instance. Then, the dynamic responses are obtained for the equivalent earthquake force and the interaction force using Newmark direct integration technique. Since the response analysis is carried out in time domain, it can be easily extended to the nonlinear analysis. Example analysis has been carried out to verify the present method in a multi-layered half-space.

  • PDF

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

A Study on the Steady Drift Forces on Barge (바아지선에 작용하는 정상표류력에 관한 연구)

  • 조효제
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.38-45
    • /
    • 1997
  • The steady drift forces on a barge in waves are investigated. The steady drift forces due to a near-field method which is based on direct integration of the pressure acting on the submerged surface of barge are compared with those due to far-field method which is based on the theory of momentum conservation. Numerical results of the linear motions are compared with the experimental and numercal ones which was submitted in the literature. A convergence of the steady drift forces according to the increase of the number of panels which represent the submerged surface are discussed.

  • PDF

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

NIR DIODE ARRAY SPECTROMETERS ON AGRICULTURAL HARVEST MACHINES OVERVIEW AND OUTLOOK

  • Rode, Michael
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1172-1172
    • /
    • 2001
  • Compact Near Infrared Diode Array Spectrometers offer new possibilities for on line quality assurance in the agricultural sector. Due to their speed and complete robustness towards temperature fluctuations and mechanical shock Diode Array Spectrometers are suitable for the use on Agricultural Harvest Machines. The growing consumer consciousness of food quality in combination with falling manufacturing prices demands procedures for an effective quality control system. The various conventional types of NIR instruments which have so far been used in laboratories are unsuitable for mobile applications under the rough conditions of field cropping not only because of their slow speed of measurement but also because of their shock sensitive filter wheels and monochromators necessary for fractionating polychromatic light. Another advantage of the on line use is the reduction of the sampling error because of the continuously measurement of the whole product. Considering the large economic importance of the dry matter content on agricultural products it is of particular advantage that water belongs to those constituents which are most easily assessed in the near infrared. While other constituents of economic importance such as starch, oil and protein in grains and seeds have a much lesser effect on NIR signals, their contents can nonetheless be assessed with high analytical precision on freshly harvested grains and seeds. In the last years several applications for on line quality assessment on harvesting machines were developed and tested. The talk will give an overview and outlook on existing and future possibilities of this new field of NIR applications.

  • PDF

Fabry-Perot Modeling of Injection-Locking of the Broad-Area Diode Laser (광폭 다이오우드 레이저의 주입-잠금에 대한 Fabry-Perot 모델)

  • 권진혁;박기수;남병호
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.106-112
    • /
    • 1994
  • The injection-locking of the broad-area diode laser was analysed by using the Fabry-Perot model. The far-field pattern of the output beam was able to be treated by superposing the individual beams emitted from the front facet due to the multiple reflections between the front and rear facets. and the exact near and far field patterns were obtained. The angle-steering effect according to change of the incident frequency was changed was calculated and found to be 0.022 degree/GHz with a bandwidth of 120 GHz.20 GHz.

  • PDF