• Title/Summary/Keyword: navigational aids

Search Result 55, Processing Time 0.019 seconds

A study on the hybrid communication system to remove the communication shadow area for controller system of navigational aids (전파 음영지역 해소를 위한 항로표지관리용 하이브리드 통신 시스템에 관한 연구)

  • Jeon, Joong Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.409-417
    • /
    • 2013
  • Mu-communication board supported by multi-communication is designed with Atxmega 128A1 which is a low power energy consuming of 8-bit microcontroller. ATxmega128A1 microcontroller consists of 8 UART(Universal asynchronous receiver/transmitter) ports which can be setting appropriate user interface having command line interpreter(CLI) program with each port, 2 kbytes EEPROM, 128 kbytes flash memory, 8 kbytes SRAM. 8 URAT ports are used for the multi communication modem, GPS module, etc. and EEPROM is used for saving a configuration for program running, and flash memory of 128 kbytes is used for storing a Firm Ware, and 8 kbytes SRAM is used for stack, storing memory of global variables while program running. If we uses the hybrid communication of path optimization of VHF, TRS and CDMA to remote control AtoN(aid to navigation), it is able to remove the communication shadow area. Even though there is a shadow area for individual communication method, we can select an optimum communication method. The compatibility of data has been enhanced as using of same data frame per communication devices. For the test, 8640 of data has been collected from the each buoy during 30 days in every 5 minutes and the receiving rate of the data has shown more than 99.4 %.

A Systematic Approach to Port related Problems An Analysis on the Actual Condition of physical Distribution System of Pusan port (항만관련문제의 시스템적 고찰 부산항 물류시스템의 실태분석)

  • Lee Cheol-Yeong;Moon Seong-Hyeok
    • Journal of Korean Port Research
    • /
    • v.2 no.1
    • /
    • pp.7-28
    • /
    • 1988
  • From the viewpoint of physical distribution, the port transport process can be regarded as a system which consists of various subsystems such as navigational aids, quay handling, transfer, storage, information If management, and co-ordination with inland transport. The handling productivity of this system is determined by the production level of the least productive subsystem. So, a productivity analysis on the flow of cargoes through each subsystem should be made in order to achieve efficient port operation. The purpose of this paper is to analyze the productivity of each subsystem in Pusan port, and to bring forward problems and finally to draw up plans for their betterment. Analyzed results on the productivity of each subsystem are as follows, i) It is known that the number of tugs with low HP should be increased by a few, the number of tugs with medium HP is appropriate, and the number of tugs with high HP is in excess of that necessary. ii ) In the case of container cargoes, it is found that the transfer and storage systems in BCTOC have the lowest handling capability, with a rate of $115\%$, leading to bottle-necks in the port transport system, while the handling rate of the storage and quay handling systems in general piers is in excess of the inherent capability. iii) In the case of the principal seaborne cargoes passing through general piers, there is found to be a remarkable bottle-neck in the storage system. In the light of these findings, both the extension of storage capability and the extension of handling productivity are urgently required to meet the needs of port users. Therefore, iv) As a short-term plan, it is proposed that many measures such as the reduction of free time, the efficient application of ODCY, etc must be brought in and v) In the long-trun, even though the handling capability will accommodate an additional 960,000 TEU in 1991, the scheduled completion date of the third development plan of Pusan port, insufficiency of handling facilities in the container terminal is still expected and concrete countermeasures will ultimately have to be taken for the port's harmonious operation. In particular, the problem of co-ordination with inland transport and urban traffic should be seriously examined together in the establishment of the Pusan port development. As a method of solving this, vi) It is suggested that Pusan port (North port) should be converted into an exclusive container ternimal and overall distribution systems to the other ports for treating general cargoes must be established. vii) And finally, it is also proposed that the arrival time (cut-off time) of influx cargoes for exports such as general merchandise and steel product should be limited, with a view to securing cargoes suitable for the operational capability of BCTOC.

  • PDF

On the Analysis of Transportation System in Mokpo Port (목포항 운송시스템의 분석에 관한 연구)

  • Nam, M.U.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.321-337
    • /
    • 1997
  • Rapid change in the technological environment of marine transportation and the development of the ocean shipping industry have fostered a revolution in the port system. This in turn has caused major changes in the function and use of port in Korea. Aside from this. Mokpo Port, however continues to decline, because the existing port facilities and related subsystem are already obsolete with no chance of regaining operational effectiveness and treatment for proper implementation. Although a few studies have been done on the Mokpo Port, has not been found, any reseach for the analytical approach to the transportation system of it. This paper aims to make an extensive analysis of the physical distribution system in Mokpo Port focusing on the coordination of subsystems such as navigational aids system, quay handling and transfer system, storage system and inland transport system. The base of introduced simulation tool here is the queueing theory. The overall findings are as follows; 1. Among those vessels called at Mokpo Port in 1994, the average size of oceangoing vessels is 4,922.1 G/T, and the domestic is 317.8 G/T. The average arrival interval and service time of the domestic vessels are 6.0 hours and 24.1 hours respectively marking the berth occupation rate over 100%. Those for oceangoing vessels are 34.5 hours, 120.0 hours and 37.2%. In order to maintainin the berth occupation rate to 70% the capacity considering the 1994 of domestic piers must be extended to 145% and oceangoing vessels must be increased to 165% year called. 2. The capacity of approaching channel is enough to handle the total traffic volume. 3. Tugs are sufficiently being provided to handle all ships requiring their services 4. The capacity of storage and inland transportation systems are sufficient to handle the throughput and the yard stroage utilization rate of No.1 $\cdots$ No.5 is 4.5% and No.6 1S 30% of 1993's. 5. The utilization rate of LLc(Level Looping Crane) and PNT(PNeumaTic) are 2.7% and 18.8%, respectively. Practical solution and proposal for improvement of Transportation System in Mokpo Port are as follows; 1. To avoid the congestion in domestic pier introduction of a new port operation system is necessary allowing the domestic vessel to use the oceangoing pier. 2. To establish the port management information system to improve the efficiency of port operation. 3. To build a new storage system for high valued cargos including modernization of the present storage and handling system. 4. To insure the safety of navigation in approaching channel, The Vessel Traffic System including separation scheme is introduced. 5. To interest enormously on public relation to ship owner's association, shippers and consignees by showing that they can save cost and ship turnaround time in order to promote the call to Mokpo Port. At last, to be strategically change the function of Mokpo Port to the Leisure, Fishing & Ferry as well as Maritime port.

  • PDF

Research on Security System for Safe Communication in Maritime Environment (해상환경에서 안전한 통신을 위한 보안체계 연구)

  • Seoung-Pyo Hong;Hoon-Jae Lee;Young-Sil Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.21-27
    • /
    • 2023
  • As a means of helping ships navigate safely, navigational aids in operation in the maritime envirionment require periodic management, and due to the nature of the environment, it is difficult to visually check the exact state. As a result, the smart navigation aid system, which improves route safety and operational efficiency, utillizes expertise including sensors, communications, and information technology, unlike general route markings. The communication environment of the smart navigation aid system, which aims to ensure the safety of the navigators operating the ship and the safety of the ship, uses a wireless communication network in accordance with the marine environment. The ship collects the information necessary for the maritime environment on the land and operates. In this process, there is a need to consider the wireless communication security guideline. Basically, based on IHO S-100 a standard for facilitating data exchange and SECOM, which provides an interface for safe communication. This paper research a security system for safe communication in a maritime environment. The security system for the basic interface based on the document was presented, and there were some vulnerabillties to data exchange due to the wireless communication characteristics of the maritime environment, and the user authetication part was added considering the vulnerability that unauthorized users can access the service.

Analysis of Long-Term Variation in Marine Traffic Volume and Characteristics of Ship Traffic Routes in Yeosu Gwangyang Port (여수광양항 해상교통량의 장기변동 및 통항 특성)

  • Kim, Dae-Jin;Shin, Hyeong-Ho;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • The characteristics of ship traffic routes and the long term fluctuation in marine traf ic volume of the incoming and outgoing routes of the Yeosu Gwangyang Port were analyzed using vessel traffic data from the past 22 years and a real-time vessel traffic volume survey performed for 72 hours per year, for three years, between 2015 and 2017. As of 2017, the number of vessels passing through Yeosu Gwangyang Port was about 66,000 and the total tonnage of these ships was about 804,564 thousand tons, which is a 400 % increase from the 189,906 thousand tons shipped in 1996. Specifically, the dangerous cargo volume was 140,000 thousand tons, which is a 250 % increase compared to 1996. According to the real-time vessel traffic volume survey, the average daily number of vessels was 357, and traf ic route utilization rates were 28.1 % in the Nakpo sea area, 43.8 % in the specified sea area, and the coastal area traf ic route, Dolsan coastal area, and Kumhodo sea area showed the same rate of 6.8 %. Many routes meet in the Nakpo sea area and, parallel and cross passing were frequent. Many small work vessels entered the specific sea area from the neighboring coastal area traffic route and frequently intersected the path of larger vessels. The anchorage waiting rate for cargo ships was about 24 %, and the nightly passing rate for dangerous cargo ships such as chemical vessels and tankers was about 20 %. Although the vessel traffic volume of Yeosu Gwangyang Port increases every year, the vessel traffic routes remain the same. Therefore, the risk of accidents is constantly increasing. The route conditions must be improved by dredging and expanding the available routes to reduce the high risk of ship accidents due to overlapping routes, by removing reefs, and by reinforcing navigational aids. In addition, the entry and exit time for dangerous cargo ships at high-risk ports must be strictly regulated. Advancements in the VTS system can help to actively manage the traffic of small vessels using the coastal area traffic route.


(34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
Copyright (C) KISTI. All Rights Reserved.