• Title/Summary/Keyword: navigation solution

Search Result 484, Processing Time 0.022 seconds

Underwater Acoustic Positioning System Design for Shallow Water Depth Application

  • Kim, Kihun;Jang, In-Sung
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • This paper describes the design and implementation of a practical underwater positioning system, which is applicable for shallow water depth conditions. In this paper, two strategies are used to enhance the navigation performance. First, a low-cost acoustic-ranging-based precise navigation solution for shallow water is designed. Then, the outlier rejection algorithm is introduced by designing a velocity gate. The acoustic-ranging-based navigation is implemented by modifying the long base line solution. To enhance the tracking precision, the outlier rejection algorithm is introduced. The performance of the developed approach is evaluated using experiments. The results demonstrate that precise shallow water depth navigation can be implemented using the suggested approaches.

A Study on Solution to ERD-Navigation Interworking using USB Bulk Communication (USB Bulk 통신을 이용한 내비게이션과 차량용 영상저장장치 연동 솔루션에 관한 연구)

  • Nahm, Eui-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1409-1415
    • /
    • 2017
  • The navigation and EDR(Event Data Recorder) have a different roles but also a lot of similar or common functions and elements. A representative element is a GPS. The GPS of navigation is a more higher than the that of EDR in performance. The high performance GPS has a very short initialization time and more accurate than the GPS of EDR. And the informations of OBD(On Board Diagnostics) is able to be shared in navigation and EDR. But these inter-working product between the navigation and EDR has been not yet shown. So, this paper is aimed to show how to interwork in two devices. We utilize USB bulk communication in two devices for inter-working. It is very simple ways and it could interwork in GPS, event video and ODB II data. It could be effective in cost competence and convenience. These was implemented by hardware and software and proved by the standard test.

Expected RGDOP Based Satellite Selection Scheme for Performance Improvement of Precise Float Solution

  • Lee, Sunyong;Lim, Deok Won;Noh, Jae Hee;Lee, Jin Hyuk;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.255-265
    • /
    • 2018
  • In this paper, the positioning performance index is proposed. The proposed index is used to find satellites that degrade positioning performance to improve the positioning performance. To do this, the proposed index is calculated using the code measurement quality and the DOP. And, through the experiment, the effectiveness of the proposed index is confirmed. In the experiment, the quality of the code measurements is analyzed, and the effectiveness of the proposed index is confirmed by comparing with the result of the precise float solution. Finally, it is shown that the precise float solution performance is improved by using the proposed index.

Day-to-Day Repeatability of the Navigation Solution and SNR from the GPS Receiver installed on KSLV-I (나로호에 탑재된 GPS 수신기의 항법해와 신호대잡음비의 일반복 특성)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.774-787
    • /
    • 2011
  • This paper deals with quantitative analysis about the characteristics of GNSS(Global Navigation Satellite System) signals contaminated with multipath signals and day-to-day repeatability of the navigation solution and SNR(Signal to Noise Ratio) caused by multipath signals using the collected data from GPS receiver installed on KSLV-I which was on standby on the launch pad at Naro Space Center. Since the GPS antennas, surrounding environments and GPS satellite orbits were very slightly changed with respect to the day, the repeating pattern of the solution and SNR caused by the multipath signals was verified from the collected data. Analytic result of the multipath effects and day-to-day repeatability of the navigation solution and SNR observed at the launch pad would be used for obtaining more stable performance of the GPS receiver when the satellite launch vehicles are on standby.

Correction-Dead Reckoning using Map Matching Information in an Underground Parking Lot

  • Myung Hwan Seo;Jeeseon Kim;Sojin Park;Dongkwon Suh
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.391-398
    • /
    • 2023
  • In this paper, we propose a Correction Dead Reckoning (CDR) solution using correction information such as Map Matching FeedBack (MMFB) in an underground parking lot. In order to correct position errors in an underground parking lot, vehicle position and heading errors are corrected using MMFB information in road link properties. The proposed method was applied to an in-vehicle navigation system and tested. The experimental results show that the proposed robust dead reckoning solution corrects Dead Reckoning (DR) position errors that occur when driving for a long time in an underground parking lot.

Performance Improvement of a Floating Solution Using a Recursive Filter

  • Cho, Sung Lyong;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.117-122
    • /
    • 2014
  • In CDGPS, ambiguity resolution is determined by the performance of a floating solution, and thus, the performance needs to be improved. In the case of precise positioning at a stationary position, the batch method using multiple measurements is used for the accuracy improvement of a position. The position accuracy performance of a floating solution is outstanding, but it has a problem of high computation cost because all measurements are used. In this study, to improve the floating solution performance of the initial static user in CDGPS, a floating solution method using a recursive filter was implemented. A recursive filter estimates the position solution of the current epoch using the position solution of up to the previous epoch and the pseudorange measurement of the current epoch. The computation cost of the floating solution method using a recursive filter was found to be similar to that of the epoch-by-epoch method. Also, based on actual GPS signals, the floating solution performance was found to be similar to that of the batch method. The floating solution using a recursive filter could significantly improve the performance of the prompt initial position and ambiguity resolution of the initial static user.

Analytical fault tolerant navigation system for an aerospace launch vehicle using sliding mode observer

  • Hasani, Mahdi;Roshanian, Jafar;Khoshnooda, A. Majid
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Aerospace Launch Vehicles (ALV) are generally designed with high reliability to operate in complete security through fault avoidance practices. However, in spite of such precaution, fault occurring is inevitable. Hence, there is a requirement for on-board fault recovery without significant degradation in the ALV performance. The present study develops an advanced fault recovery strategy to improve the reliability of an Aerospace Launch Vehicle (ALV) navigation system. The proposed strategy contains fault detection features and can reconfigure the system against common faults in the ALV navigation system. For this purpose, fault recovery system is constructed to detect and reconfigure normal navigation faults based on the sliding mode observer (SMO) theory. In the face of pitch channel sensor failure, the original gyro faults are reconstructed using SMO theory and by correcting the faulty measurement, the pitch-rate gyroscope output is constructed to provide fault tolerant navigation solution. The novel aspect of the paper is employing SMO as an online tuning of analytical fault recovery solution against unforeseen variations due to its hardware/software property. In this regard, a nonlinear model of the ALV is simulated using specific navigation failures and the results verified the feasibility of the proposed system. Simulation results and sensitivity analysis show that the proposed techniques can produce more effective estimation results than those of the previous techniques, against sensor failures.

Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

  • Lee, Kwangwon;Oh, Hyungjik;Park, Han-Earl;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than $0.001^{\circ}$ at relative distances greater than 30 km.

Development of an IGVM Integrated Navigation System for Vehicular Lane-Level Guidance Services

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.119-129
    • /
    • 2016
  • This paper presents an integrated navigation system for accurate navigation solution-based safety and convenience services in the vehicular augmented reality (AR)-head up display (HUD) system. For lane-level guidance service, especially, an accurate navigation system is essential. To achieve this, an inertial navigation system (INS)/global positioning system (GPS)/vision/digital map (IGVM) integrated navigation system has been developing. In this paper, the concept of the integrated navigation system is introduced and is implemented based on a multi-model switching filter and vehicle status decided by using the GPS data and inertial measurement unit (IMU) measurements. The performance of the implemented navigation system is verified experimentally.

Development of an AOA Location Method Using Covariance Estimation

  • Lee, Sung-Ho;Roh, Gi-Hong;Sung, Tae-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.485-489
    • /
    • 2006
  • In last decades, several linearization methods for the AOA measurements have been proposed, for example, Gauss-Newton method and closed-form solution. Gauss-Newton method can achieve high accuracy, but the convergence of the iterative process is not always ensured if the initial guess is not accurate enough. Closed-form solution provides a non-iterative solution and it is less computational. It does not suffer from convergence problem, but estimation error is somewhat larger. This paper proposes a self-tuning weighted least square AOA algorithm that is a modified version of the conventional closed-form solution. In order to estimate the error covariance matrix as a weight, two-step estimation technique is used. Simulation results show that the proposed method has smaller positioning error compared to the existing methods.

  • PDF