• Title/Summary/Keyword: navier method

Search Result 1,247, Processing Time 0.026 seconds

AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD (내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자)

  • Baek, C.;Kim, M.;Choi, S.;Lee, S.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

COMPARISON OF COUPLING METHODS FOR NAVIER-STOKES EQUATIONS AND TURBULENCE MODEL EQUATIONS (Navier-Stokes 방정식과 난류모델 방정식의 연계방법 비교)

  • Lee, Seung-Soo;Ryu, Se-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.111-116
    • /
    • 2005
  • Two coupling methods for the Navier-Stokes equations and a two-equation turbulence model equations are compared. They are the strongly coupled method and the loosely coupled method. The strongly coupled method solves the Navier-Stokes equations and the two-equation turbulence model equations simultaneously, while the loosely coupled method solves the Navier-Stokes equation with the turbulence viscosity fixed and subsequently solves the turbulence model equations with all the flow quantities fixed. In this paper, performances of two coupling methods are compared for two and three-dimensional problems.

  • PDF

DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS (압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발)

  • Choi, J.H.;Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver와 Immersed Boundary Method)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.397-403
    • /
    • 2010
  • The Immersed boundary method(IBM) is one of CFD techniques which can simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In these cases, pressure buildup near IB was found to occur when linear interpolation and stadard mass conservation is used and the interpolation scheme became complicated when higher order of interpolation is adopted. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. Bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies.

  • PDF

Optimal Control of steady Incompressible Navier-Stokes Flows (Navier-Stokes 유체의 최적 제어)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.661-674
    • /
    • 2002
  • The objective of this study is to develop efficient numerical method to enable solution of optimal control problems of Navier-Stokes flows and to apply these technique to the problem of viscous drag minimization on a bluff body by controlling boundary velocities on the surface of the body. In addition to the industrial importance of the drag reduction problem, it serves as a model for other more complex flow optimization settings, and allows us to study, modify, and improve the behavior of the optimal control methods proposed here. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. This study shows how reduced Hessian successive quadratic programming method, which avoid converging the flow equations at each iteration, can be tailored to these problems.

Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation (이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화)

  • Choi, Hyoung-Gwon;Yoo, Jung-Yul;Kang, Sung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

NUMERICAL IMPLEMENTATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATION

  • CHOI, YONGHO;JEONG, DARAE;LEE, SEUNGGYU;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.103-121
    • /
    • 2015
  • In this paper, we briefly review and describe a projection algorithm for numerically computing the two-dimensional time-dependent incompressible Navier-Stokes equation. The projection method, which was originally introduced by Alexandre Chorin [A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), pp. 745-762], is an effective numerical method for solving time-dependent incompressible fluid flow problems. The key advantage of the projection method is that we do not compute the momentum and the continuity equations at the same time, which is computationally difficult and costly. In the projection method, we compute an intermediate velocity vector field that is then projected onto divergence-free fields to recover the divergence-free velocity. Numerical solutions for flows inside a driven cavity are presented. We also provide the source code for the programs so that interested readers can modify the programs and adapt them for their own purposes.