• Title/Summary/Keyword: natural wind

Search Result 860, Processing Time 0.037 seconds

A Study on the vibration characteristics of offshore wind turbine tower including seabed soil-structure interaction (해저지반-구조물 상호작용을 고려한 해상풍력발전타워의 진동특성)

  • Lee, Jung-Tak;Lee, Kang-Su;Son, Choong-Yul;Park, Jong-Vin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.416-422
    • /
    • 2009
  • Offshore wind turbine are subjected to more various loads than general land structures and the stability of structures is supported by the piles driven deeply in the subsoil. So it is more important for offshore structures to consider seabed soil-structure interaction than land structures. And the response of a fixed offshore structure supported by pile foundations is affected by resist dynamics lateral loading due to wave forces and ocean environmental loads. In this study, offshore wind tower response are calculated in the time domain using a finite element package(ANSYS 11.0). Several parameters affecting the vibration characteristics of the natural frequency and mode shape and the tower response have been investigated.

  • PDF

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF

Analysis of Dynamic Characteristics by Rotational Speed of Wind Turbine Blade using Transfer Matrix (전달 매트릭스를 이용한 풍력 터빈 블레이드의 회전속도에 따른 동특성 변화 해석)

  • Lee, Jung-Woo;Shin, Dong-Ho;Oh, Jae-Eung;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.144-149
    • /
    • 2012
  • The transfer matrix method is used to determine the dynamic characteristics(natural frequencies and mode shapes) by rotational speed of wind turbine blade. The problems treated on this study is coupled flapwise bending and chordwise bending of pre-twisted nonuniform wind turbine blade. The orthogonality relations that exist between the vibrational modes is derived and the algorithm for determination of the natural vibrational characteristics is suggested.

  • PDF

Development of Ventilator without Power using Air Flow (공기흐름을 이용한 무동력 환풍장치 개발)

  • Kim, Bum-Suk;Kwon, Taek-Joo;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The studies on the efficient ventilator to reduce fire and save energy have been proceeded actively. The purpose of this paper is to design a ventilator used in residential wood stove. The ventilator consists of rotation and support part, and it is operated by natural wind without power. The shape of rotation part of the ventilator is like airfoil to reinforce pressure drop. We designed direction controller for the rotation part to track the direction of wind continuously. The rotation and support part have point-contact each other to minimize a friction. We verify the properties of the proposed ventilator though simulation and experiment. The results show the proposed ventilator can exhaust safely combustion gas of the stove more than other ventilator.

The Influence on the Stack Effect with the Opening of Smoke Ventilators in High-rise Buildings (초고층 건축물에서 배연창 개방이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyue;Yeo, Yong-Ju;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.209-213
    • /
    • 2008
  • The effects on the performance of natural smoke exhaust ventilators installed in high-rise buildings were analyzed depending on the wind velocities and smoke temperatures using CONTAMW tool. The results showed that the smoke exhaust ventilators can maintain given performances in such conditions as low smoke temperatures and low wind velocities. However, high smoke temperatures and high wind velocities can prevent the smoke ventilators to exhaust smokes from the fire room. Significant changes in stack effects in high-rise buildings can also occur with the opening of smoke ventilators in the fire floor.

  • PDF

A Classification of the Wind Turbine Accident (풍력발전기에서 발생하는 사고의 원인에 대한 분류)

  • Yang, In-Sun;Kim, Seok-Woo;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2005
  • Wind turbines can produce an unpolluted electricity getting energy only from the natural resource. It is one of the most economic power generating system among renewables up to now. Currently, ther are many wind turbines in operation world-wide under various external conditions. A wind turbine is composed of many machine components. So it is likely that the many accidents have been occurred in many wind turbines. In this paper, we reviewed "Wind turbine Accident data" of Caithness Windfarms Information Forum 2005. We classified this data and analyzed. The most of wind turbines in our country are foreign product. It is like that application it is possible with information which is important for wind farm operations and maintenance and for the wind turbine design and manufacturing.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis (지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가)

  • Park, Kwang-yeun;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

Integrated Water Resources Management in the Era of nGreat Transition

  • Ashkan Noori;Seyed Hossein Mohajeri;Milad Niroumand Jadidi;Amir Samadi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.34-34
    • /
    • 2023
  • The Chah-Nimeh reservoirs, which are a sort of natural lakes located in the border of Iran and Afghanistan, are the main drinking and agricultural water resources of Sistan arid region. Considering the occurrence of intense seasonal wind, locally known as levar wind, this study aims to explore the possibility to provide a TSM (Total Suspended Matter) monitoring model of Chah-Nimeh reservoirs using multi-temporal satellite images and in-situ wind speed data. The results show that a strong correlation between TSM concentration and wind speed are present. The developed empirical model indicated high performance in retrieving spatiotemporal distribution of the TSM concentration with R2=0.98 and RMSE=0.92g/m3. Following this observation, we also consider a machine learning-based model to predicts the average TSM using only wind speed. We connect our in-situ wind speed data to the TSM data generated from the inversion of multi-temporal satellite imagery to train a neural network based mode l(Wind2TSM-Net). Examining Wind2TSM-Net model indicates this model can retrieve the TSM accurately utilizing only wind speed (R2=0.88 and RMSE=1.97g/m3). Moreover, this results of this study show tha the TSM concentration can be estimated using only in situ wind speed data independent of the satellite images. Specifically, such model can supply a temporally persistent means of monitoring TSM that is not limited by the temporal resolution of imagery or the cloud cover problem in the optical remote sensing.

  • PDF

Control Method of Wind Induced Vibration Level for High-rise buildings (초고층 건물의 풍가속도응답 조절 기법)

  • Kim Ji-Eun;Seo Ji-Hyun;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.375-382
    • /
    • 2005
  • In this paper, a practical control method of wind-induced vibration of high-rise buildings is presented in the form of resizing algorithm. In the structural design process for high-rise buildings, the lateral load resisting system for the building is more often determined by serviceability design criteria including wind-induced vibration level. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. The performance of the proposed method is evaluated by comparing wind-induced vibration levels estimated both from approximate techniques and wind tunnel test.

  • PDF