• 제목/요약/키워드: natural vibration frequency

검색결과 2,140건 처리시간 0.048초

마이크로 스피커 다이어프램의 진동해석 (Vibration Analysis of Micro Speaker Diaphragm)

  • 홍도관;우병철;안찬우;한근조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.551-554
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array is made. Therefore this study carried to decide shape of diaphragm, voice coil weight and thickness of diaphragm for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design factors that minimized 1st natural frequency and maximized 2nd natural frequency of diaphragm.

  • PDF

해상 풍력 발전용 구조물 변화에 따른 고유진동해석 (A Study of Natural Frequency on Offshore Wind Turbine Structural Change)

  • 이강수;이정탁;손충렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1008-1016
    • /
    • 2007
  • The purpose of this paper is to investigate the Natural Frequency behavior characteristic of Wind Turbine Tower model, and calculated the stress values of thrust load, wave load, wind load, current load, and gravity load. The offshore Jacket Type Tower which was installed in Vitenam South China Sea is used for the study. Natural frequency and mode shape are calculated with commercial program using the measured vibration. The finite element analysis is performed with commercial F.E.M program(ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

주증기 배관 헤더의 압력맥동에 대한 분기 배관의 고진동 대책 (Countermeasure on High Vibration of Branch Pipe with Pressure Pulsation Transmitted from Main Steam Header)

  • 김연환;배용채;이영신
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.988-995
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve, and header generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 700 MW nuclear power plant. The exciting sources and response of the piping system are investigated by using on-site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3 Hz, 4.4 Hz and 6.6 Hz transmitted from main steam balance header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness and damping factor were installed to reduce excessive vibration.

주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향 (Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation)

  • 김연환;배용채;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

프리플렉스 합성보를 적용한 기존 건물 바닥구조의 진동평가 (Vibration evaluation of building floors using Preflex composite beams)

  • 경재환;임지훈;김희철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.194-201
    • /
    • 2001
  • The dynamic characteristic of the building using preflex composite beams is a low natural frequency due to long span. Therefore, both vibrational acceleration and the characteristic of natural frequency damage to people using the building, This study estimates a vibrational acceleration based on walking and natural frequency in five kinds of building. Recently, using methods of evaluating a serviceability are based on JIA, AISC, Eurocode, CSA, DIN and ISO. ed. The result of this study is content with foreign regulations and serviceability. However, considering of these results, the method of evaluating serviceability should be developed in the future.

  • PDF

합성 데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구 (A Study on Adjustment of Prediction Equation for Natural Frequency Using the Simplification of Section Transformation Method of Composite Deck Plate Floor Systems)

  • 임지훈;김희철;홍원기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.731-738
    • /
    • 2001
  • The conventional techniques for the prediction of natural frequency are often used to estimate the floor vibration. However. the predicted frequency differs significantly from the measured one since the predicted equation is not able to proper1y treat various material type. Transformation of slab section is necessary to predict natural frequency of composite deck plate, and this effort is complicated due to the various shape of each deck plate. In this study, a new simplified methodology to transform slab section is proposed, which treats effective depth as the distance from the top of a concrete topping to neutral axis of each deck plate. Finally proposed equation with fairly reasonable result compared to the measured values is obtained. based on the modification of vibration equation from LRFD theory. This efforts enhance errors in predicting frequency up to 15%.

  • PDF

75MW 급 발전용 보일러 관군에서의 음향공진에 의한 진동/소음 사례연구 (A Case Study on the vibration and noise by acoustic resonance in the tube bank of a boiler of 75MW power plant)

  • 김철홍;방경보;주영호;변형현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.150-155
    • /
    • 2000
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a power plant. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At the resonance, the value of vibration in this system was 595 ${\mu}m$, p-p and the sound pressure level was maximum 103 dBA. And the resonance frequency was found to be 35 Hz. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}20%$, acoustic resonance is possible. In this system, the difference of these frequencies was 1.8%. We can evaluate the possibility of acoustic resonance by using damping parameter. We did eliminate acoustic resonance by installing baffle in tube bank. After installing baffle, the level of vibration and noise was reduced dramatically.

  • PDF

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

파도에너지를 효율적으로 이용하기위한 파력진동발전기에 대한 연구 (The research of vibration power generation to make effective use of ocean wave energy)

  • 이홍찬;이재호;한기봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 후기공동학술대회 논문집
    • /
    • pp.75-75
    • /
    • 2011
  • This paper has been studied that ocean wave vibration power generator is composed of buoy and vibration generator to make effective use of ocean wave energy. We designed buoy to can occur resonance for dominant frequency with ocean wave. And then we fitted the natural frequency of vibration system with vibration power generator to buoy's natural frequency. And we can show that the amplitude of ocean wave up and down motion is decreased, on the other hand, the displacement of vibration system with vibration power generator is increased. Therefore, ocean wave vibration power generator which is proposed in this paper has merits not only securing its stability from surroundings but also producing more electronic power by using ocean wave energy.

  • PDF

고층건물의 상시진동계측을 통한 고유진동수 (Natural Frequency of Tall Building Through Ambient Vibration Measurement)

  • 윤성원;주영규
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.117-124
    • /
    • 2003
  • 고층건물의 사용성설계는 가속도와 같은 풍응답진동에 의하여 자주 영향을 받으므로, 이때 고유진동수의 올바른 산정은 중요하다. 설계단계에서 사용되고 있는 이러한 진동수 경험식들은 상호간에 서로 다른 결과치를 제시하는 경향이 있다. 이 논문은 철골조 건물의 진동주기에 대한 것으로서, 건물의 진동실험방법과 상시진동실험에서 얻은 고유주기를 예측하기 위한 방법을 제시하였다. 서울지역 21개동의 상시진동 계측데이터에서 고유주기를 산정하였다. 철골조 고층건물의 고유주기 근사식을 제안하였으며, 고유주기의 근사식을 국내외 기준 및 고유치해석의 결과와 비교하였다.