• 제목/요약/키워드: natural vibration

검색결과 3,248건 처리시간 0.028초

실교 가진시험을 통한 현수교의 고유진동특성 연구 (Vibrational Characteristics of Suspension Bridge by Full-Scale Test)

  • 조선규;김선곤
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.12-17
    • /
    • 2006
  • The bridge to be analyzed is a self-anchored suspension bridge which is constructed within the country. Forced vibration test was performed with oscillator for verification of safety, maintenance and management. In this study, the feasibility of deduction was verified with the modified analysis model by comparing natural frequency, natural mode and damping ratio of the real bridge, which are obtained from the vibration test of the whole bridge after construction of 3-dimensional self-anchored cable suspension bridge, with the eigenvalue of analytic computation model and evaluating them. As a result of study, the friction of bridge bearing must be considered to get the natural frequencies of flexural vibration, and evaluating the polar moment of inertia is critical factor in analysis modeling in case of torsional vibration. The logarithmic damping ratio of the test appeared to exceed the ordinary one assumed at the design phase.

Non-linear vibration and stability analysis of a partially supported conveyor belt by a distributed viscoelastic foundation

  • Ghayesh, M.H.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.17-32
    • /
    • 2007
  • The main source of transverse vibration of a conveyor belt is frictional contact between pulley and belt. Also, environmental characteristics such as natural dampers and springs affect natural frequencies, stability and bifurcation points of system. These phenomena can be modeled by a small velocity fluctuation about mean velocity. Also, viscoelastic foundation can be modeled as the dampers and springs with continuous characteristics. In this study, non-linear vibration of a conveyor belt supported partially by a distributed viscoelastic foundation is investigated. Perturbation method is applied to obtain a closed form analytic solutions. Finally, numerical simulations are presented to show stiffness, damping coefficient, foundation length, non-linearity and mean velocity effects on location of bifurcation points, natural frequencies and stability of solutions.

마이크로 3축 링 자이로스코프의 동역학 (Dynamics of a Micro Three-axis Ring Gyroscope)

  • 최상현;김창부
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.1001-1009
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

표준실험동의 구조별 소음 진동 특성 (Noise and Vibration Characteristics of Construction structures in Standard Laboratory)

  • 정영;유승엽;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

내압 및 온도조건을 고려한 Elbow부가 있는 원형배관의 진동해석 (Vibration Analysis of Pipe with Elbow subject to Internal Pressure and Temperature)

  • 김월태;이현승;이영신;조택동;신성기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.223-226
    • /
    • 2004
  • Vibration analysis of pipe with Elbow subject to internal pressure and temperature is studied through a commercial finite element analysis tool. The natural frequency of Elbow increased very slightly as internal pressure increases. Meanwhile, the frequency of Elbow decreased as temperature increases. It is shown that frequency deviation caused by temperature was greater than that caused by pressure. As the length of Elbows increases, frequency deviation by temperature stew rapidly, but frequency deviation by pressure was not so high. It is concluded that more concern needs to be focused on temperature rather than on pressure in terms of natural frequency.

  • PDF

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations

  • Zenkour, Ashraf M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.269-280
    • /
    • 2017
  • The natural vibration analysis of microbeams resting on visco-Pasternak's foundation is presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the classical Euler-Bernoulli's beam theory is used for description of natural frequencies of the microbeam. The generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Effects of edge crack on the vibration characteristics of delaminated beams

  • Liu, Yang;Shu, Dong W.
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.767-780
    • /
    • 2015
  • Delaminations and cracks are common failures in structures. They may significantly reduce the stiffness of the structure and affect their vibration characteristics. In the present study, an analytical solution is developed to study the effect of an edge crack on the vibration characteristics of delaminated beams. The rotational spring model, the 'free mode' and 'constrained mode' assumptions in delamination vibration are adopted. This is the first study on how an edge crack affects the vibration characteristic of delaminated beams and new nondimensional parameters are developed accordingly. The crack may occur inside or outside the delaminated area and both cases are studied. Results show that the effect of delamination length and thickness-wise location on reducing the natural frequencies is aggravated by an increasing crack depth. The location of the crack also influences the effect of delamination, but such influence is different between crack occurring inside and outside the delaminated area. The difference of natural frequencies between 'free mode' and 'constrained mode' increases then decreases as the crack moves from one side of the delaminated region to the other side, peaking at the middle. The analytical results of this study can serve as the benchmark for FEM and other numerical solutions.

집중 질량을 갖는 폭 변단면 외팔보의 굽힘 진동 해석 (Bending Vibration Analysis of Width Tapered Beams with Concentrated Tip Mass)

  • 이정우;곽종훈;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.822-829
    • /
    • 2015
  • A transfer matrix method has been developed to determine the more accurate natural frequencies for the bending vibration of Bernoulli-Euler beam with linearly reduced width and a concentrated tip mass. The proposed method can be computed an infinite number of the natural frequencies using a single element. Using the differential equation, shear force, and bending moment in which can be deduced by the diverse variational principles, a transfer matrix is formulated. The roots of the differential equation are computed by the Frobenius method. The effect of the concentrated mass for the natural frequencies of width-tapered beams is examined through a parametric study, and to show the accuracy of the proposed method, the computed results compared with those obtained from commercial finite element analysis program(ANSYS).

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.