• Title/Summary/Keyword: natural rubber compound

Search Result 43, Processing Time 0.024 seconds

Binary Cure Systems of 1,6-Bis(N,N'-dibenzylthiocarbamoyldithio)-hexane and Benzothiazole Sulfenamides in Carbon Black-filled Natural Rubber Compounds

  • Choi, Sung-Seen;Park, Byung-Ho;Lee, Seung-Goo;Kim, Beom-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.320-324
    • /
    • 2002
  • Binary cure system is composed of different two cure accelerators, which can cause a synergy effect to delay the scorch time and to increase the cure rate. In this study, binary cure systems between 1,6-bis(N,N'-dibenzylthiocarbamoyldithio)-hexane (DBTH) and benzothiazole sulfenamides were investigated using carbon black-filled natural rubber compounds. N-Cyclohexyl-2-benzothiazole sulfenamide (CBS), N-tert-butyl-2-benzothiazole sulfenamide (TBBS), and 2-(morpholinothio) benzothiazole (MOR) were employed as benzothiazole sulfenamides. The binary cure systems show scorch safty at high temperature. The binary cure systems have faster cure rate and better reversion resistance than the single cure system of the benzothiazole sulfenamides. DBTH is found to be more effective to decrease the viscosity of a compound than the benzothiazole sulfenamides. Physical properties of the vulcanizates with the binary cure system are better than those of the vulcanizates with the single one.

Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties (Thiuram, Thiazole, Sulfenamide계 가황촉진제가 실리카로 충진된 천연고무 복합소재의 가황 및 물성에 미치는 영향)

  • Choi, Changyong;Kim, Seong-Min;Park, Young-Hoon;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Kwang-Jea
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.411-415
    • /
    • 2011
  • Various types of accelerators, thiuram (TMTD, DPTT), thiazole (MBT, MBTS), and sulfenamide (CBS, NOBS) are added into a silica filled natural rubber compound. Their effects on vulcanization and mechanical properties are investigated. TMTD showed the fastest vulcanization rate, the higer maximum torque ($T_{max}$), and the excellent mechanical properties (300% modulus, tensile strength, elongation). MBT and MBTS showed an intermediate vulcanization rate between thiuram and sulfenamide type and added ones, and also showed the lower $T_{max}$ and mechanical properties compared to that of other compounds. Finally, NOBS showed the slowest vulcanization rate and the lower mechanical property but the moderate $T_{max}$.

Mechanical Properties of Natural Rubber/Acrylonitrile-Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords (Natural Rubber/Acrylonitrile-Butadiene Rubber 블렌드의 기계적 물성과 강선과의 접착거동)

  • Sohn, Bong-Young;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Mechanical properties and their adhesion behavior with zinc- and brass-plated steel cords of natural rubber/acrylonitrile-butadiene blend compounds were investigated as a function of blend ratio. The Mooney viscosity and stress relaxation time were found to be lowered with increasing NBR content. Tensile modulus generally increased with increasing NBR content. Tensile stress at break stayed constant up to about 40 phr and showed minimum at $50{\sim}60 phr$, and thereafter increased with increasing NBR content. Strain at break decreased linearly below 50 phr, and above the level it showed nearly constant value. Based on the abrupt drops in elastic modulus and tan ${\delta}$ peak, the glass transition temperature of NR and NBR were found to be -55 and $-10^{\circ}C$, respectively. In the case of NR/NBR blend compounds, two distinct transition points were observed and each transition position was not affected by NBR level indicating an incompatible nature of NR/NBR blend system. The pullout force and rubber coverage decreased to the level of about 40% to that of pure m compound, when the 50 phr of NR was replaced by NBR. However, the pure NBR compound showed the comparable adhesion performance with NR(${\sim}90%$). The sulfur concentration was found to become lower with the increased NBR content at the adhesion interface based on the Auger spectrometer results, representing a lack of adhesion layer formation, and this was explained for a possible cause of low adhesion performance with adding NBR.

  • PDF

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Bifunctional Silane (TESPD) Effects on Silica Containing Elastomer Compound Part I: Natural Rubber (NR) (양기능성실란(TESPD)이 실리카함유 복합소재에 미치는 영향)

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.134-142
    • /
    • 2009
  • Organo bifunctional silane (TESPD) is added into silica containing NR and its effects are investigated with respect to the vulcanization properties, the processability, and the physical properties. The addition of the TESPD into silica filled NR compound increases the degree of crosslinking by formation of a strong 3-dimensional network structure with silica surface via coupling reaction, which results in an improved mechanical property. It also improves the processabilities compared to the Control compound.

Wear Behavior of C/B filled NR Compounds using a Blade-type Abrader (칼날형 마모시험기를 이용한 C/B충전 NR 배합고무의 마모거동)

  • Youn, J.H.;Kaang, Shinyoung
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Friction and wear behaviors of natural rubber(NR) compounds were investigated using a blade-type abrader. The effects of temperature, normal load, and rotation speed on wear rate were studied, and wear behaviors of deteriorated compounds were also evaluated. As the rotation speed of specimen and the normal load to specimen increased, the wear rate increased. However, as the experimental temperature increased, the frictional coefficient decreased and the wear rate decreased accordingly. It was found from the wear studies that a power-law relation works between the frictional work input and the wear rate. It was observed that the wear rate dramatically increased by the degradation of the rubber specimen. The wear pattern was developed and the bigger ridge space of the pattern was observed usually in the higher normal load applied. In determining the wear rate of rubber compound, the continuous measurements of wear distance using the blade-type abrader could be successfully used instead of intermittent measurements of wear-loss weight.

Effect of Changing of Filling Materials in NR-SBR Type Elastomer Based Rubber Materials on Mechanical Properties (필러재료의 변화에 따른 NR-SBR 타입 엘라스토머 기반 고무재료의 기계적물성)

  • Bulbul, Saban;Yasar, Mustafa;Akcakale, Nuretttin
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.664-670
    • /
    • 2014
  • The effects of different filling materials and stabilizers in polymer based materials that are used as shoe soles in the shoemaking industry on the mechanical properties (strength, failure, tensile, tearing, bending etc.) of the final products have been examined in this study. Natural rubber (NR RSS3) and styrene-butadiene rubber (SBR 1502) were used as the main matrix material. New compounds were formed by replacing the fillings in the general compound of the existing factory ($SiO_2$, $CaCO_3$) with 40% (1200 g) blast furnace flue dust, rice husk, reclaimed rubber (recycled) and wood ash. Comparison of the new compounds with the existing compounds revealed a decrease in hardness, density, dimension stability, bending, tearing, % elongation and failure strength and an increase in wearing.

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Influence of Mixing Procedure on Properties of Rubber Compounds Filled with Both Silica and Carbon Black (배합 공정이 실리카와 카본블랙으로 보강된 고무 배합물의 특성에 미치는 영향)

  • Joo, Chang-Whan;Kim, Dong-Chul;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • Silica-filled rubber compound needs longer mixing time compared to carbon black-filled one since it has poor dispersion or the filler. Influence of the mixing procedure on the properties of natural rubber compound filled with both silica and carbon black was studied. The discharge temperature of the master batch (MB) mixing was $150^{\circ}C$. The mixing time was longer when silica and carbon black were loaded separately than when loaded simultaneously. The mixing time was longer when silica was loaded first than when carbon black is loaded first. The compounds prepared by one MB step (conventional mixing) were compared with the compounds prepared by two MB steps (two-step mixing). Scorch times of the two-step mixing compounds were longer than those by the conventional mixing ones. Bound rubber contents of the formers were lower than those of the tatters. The two-step mixing vulcanizates had longer elongation at break, higher tensile strength, and better fatigue life.

Cure Characteristics and Mechanical Properties of Ternary Accelerator System in NR/BR Compounds (NR/BR Compounds의 가황촉진제 병용에 의한 가황 특성 및 기계적 물성 연구)

  • Kim, Il-Jin;Kim, Wook-Soo;Lee, Dong-Hyun;Bae, Jong-Woo;Byon, Young-Hoo;Kim, Wonho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • In the 1840s, Goodyear found out sulfur cure system, but cure time was too slow. So producing of rubber product takes a long time. In 1904, Oenslager et al. found that aniline is accelerated sulfur cure system. Recently, many rubber industries needed high yield and good quality. So, many researchers have studied a rubber system with fast vulcanization time and good mechanical properties. In this study, cure characteristics and mechanical properties of NR/BR compounds by accelerator with MBTS(2,2' Dithiobisbenzothiazole), TMTM(Tetramethylthiuram Monosulfide), ZDMC (Zinc dimethyldithiocarbamate), CBS(N-Cyclohexyl benzothiazolyl-2-sulfenamide), DPG(Diphenylguanidine) were evaluated. The results of the study indicate that cure charateristics($t_{90}$: 235 sec, $T_{max}$: 5.77 Nm) and mechanical properties (100, 300% modulus : 2,180, 5.656 Mpa and tear strength: 59.58 kgf/cm) of NR/BR compounds shows efficient acceleration with MBTS 1.5 phr, TMTM 0.5 phr, DPG 0.15phr. This is due to the synergistic activity of ternary accelerator system in rubber vulcanization.