• Title/Summary/Keyword: natural pesticides

Search Result 126, Processing Time 0.02 seconds

Bibliometric Analysis of the Journal of the Korean Society of Clinical Toxicology (대한임상독성학회지에 발표된 연구 문헌의 통계적 분석)

  • Lee, Jin Hyuck;Lim, Tae Ho;Kim, Won Hee;Kim, Chang Sun;Oh, Jae Hoon;Kang, Hyung Goo;Choi, Hyuk Joong;Kang, Bo Seung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.11 no.2
    • /
    • pp.96-100
    • /
    • 2013
  • Purpose: The purpose of this study was to examine the research characteristics and the trend of the Journal of the Korean Society of Clinical Toxicology by bibliometric analysis. Methods: This study was a retrospective quantitative literature review of the publications. We collected data from the internet homepage of the Korean Society of Clinical Toxicology. Among 228 publications, a total of 225 articles were included in this analysis. The data were analyzed from different perspectives, including article types, study design, number of authors, type of toxic material, and the top five ranking prolific authors and the affiliated organization were identified. Results: A total of 225 articles were analyzed; 98(43.6%) were original articles, 115(51.1%) were case reports, and 12(5.3%) were reviews. Among the original articles, nine were prospective studies and 89 were retrospective studies, which were assorted according to study design; there were two(2.0%) cross sectional studies, 93(94.9%) cohort studies, and three(3.1%) etc. The median number of authors per article was five and the top five ranking authors and affiliated organizations published 31.1% and 32.8% of total articles, respectively. The most abundant topic was pesticides, followed by natural poisons and poisons encountered in the work place. Conclusion: Since its foundation, the Journal of the Korean Society of Clinical Toxicology has published 19 issues and 228 articles and has played a key role in development of toxicology research in Korea. However, low ratio of original articles and a decrease in the number of recent articles indicates that greater effort is needed in clinical research. In addition, further interest of many experts and various institutions is necessary.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

The Distribution of the Exotic Species, Ophraella communa LeSage (Coleoptera, Chrysomelidae) and Their Applicability for Biological Control against Ragweed Ambrosia artemisiifolia L. on Jeju Island (제주도에서의 외래종 돼지풀잎벌레 분포 및 외래종 돼지풀 제거를 위한 생물학적 방제 대상종으로의 활용 가능성)

  • Kim, Do-Sung;Oh, Ki-Seok;Lee, Yeong-Don;Lee, Su-Young;Lee, Heejo;Kim, Hyun-Jung;Kim, Dong-Eon
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.437-445
    • /
    • 2017
  • An analysis of recent studies and a field survey were conducted to investigate the distribution of the exotic species Ophraella communa LeSage (Coleoptera, Chrysomelidae) and the results' applicability for biological control against ragweed, which disturbs the island's ecosystem. The ragweed beetle (O. communa) can be found anywhere on the host plant Ambrosia artemisiifolia L., which grows in Jeju Island. Moreover, ragweed beetles possess the following characteristics: a high host plant specificity, a high-temperature resistance, an excellent mobility, and multivoltinism. Ragweed is extensively distributed and gradually expands its habitat further on Jeju Island. For this reason, it is recommended to take advantage of O. communa for the biological control of ragweed instead of pesticides or direct removal, considering that Jeju is endowed with many natural reserves and unique insular traits.

Entomopathogenic Fungi-mediated Pest Management and R&D Strategy (곤충병원성 진균을 활용한 해충 관리와 개발 전략)

  • Lee, Se Jin;Shin, Tae Young;Kim, Jong-Cheol;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.197-210
    • /
    • 2022
  • Entomopathogenic fungi can be used to control a variety of sucking and chewing insects, with little effect on beneficial insects and natural enemies. Approximately 170 entomopathogenic fungal insecticides have been registered and used worldwide, with the recent focus being on the mode of action and mechanism of insect-fungal interactions. During the initial period of research and development, the industrialization of entomopathogenic fungi focused on the selection of strains with high virulence. However, improvement in productivity, including securing resistance to environmental stressors, is a major issue that needs to be solved. Although conidia are the primary application propagules, efforts are being made to overcome the limitations of blastospores to improve the economic feasibility of the production procedure. Fungal transformation is also being conducted to enhance insecticidal activity, and molecular biology is being used to investigate functions of various genes. In the fungi-based pest management market, global companies are setting up cooperative platforms with specialized biological companies in the form of M&As or partnerships with the aim of implementing a tank-mix strategy by combining chemical pesticides and entomopathogenic fungi. In this regard, understanding insect ecology in the field helps in providing more effective fungal applications in pest management, which can be used complementary to chemicals. In the future, when fungal applications are combined with digital farming technology, above-ground applications to control leaf-dwelling pests will be more effective. Therefore, for practical industrialization, it is necessary to secure clear research data on intellectual property rights.

Growth and Bioactive Compound Contents of Various Sprouts Cultivated under Dark and Light Conditions (광 유무에 따른 다양한 새싹 채소의 생육 및 생리활성 화합물의 함량)

  • Lee, Jin-Hui;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.218-229
    • /
    • 2021
  • Recently, as consumers' interest and importance in health care have significantly increased, they prefer natural and organic foods that do not use chemical pesticides. Since sprout vegetables effectively promote health and prevent diseases such as cancer and cardiovascular disease, the consumption of sprout vegetables, a highly functional and safe food, has been increased significantly. This study aimed to investigate the effect of light on the growth and bioactive compounds of seven different sprout vegetables. After sowing the seeds of various sprout vegetables (kale, Chinese kale, broccoli, red cabbage, alfalfa, red radish, and radish), the sprouts were cultivated under light conditions (20℃, RGB 6:1:3, 130 μmol·m-2·s-1, 12 hours photoperiod) and dark condition for 7 days. Sprouts samples were taken at 1-day intervals from 4 to 7 days after treatment. The fresh weight, dry weight, plant height, total phenol content, and antioxidant capacity were measured. Brassica species (kale, Chinese kale, broccoli, red cabbage) and Medicago species (alfalfa) had significantly higher fresh weight values under dark conditions, while the content of bioactive compounds was increased considerably under light conditions. In contrast, the fresh weight of Raphanus genus (red radish, radish) significantly increased under the light condition, but the antioxidant phenolic compounds were significantly higher under the dark state. A negative correlation was observed between the growth and secondary metabolites in various sprout vegetables. This study confirmed the effect of light and dark conditions on different sprout vegetables' growth and nutritional value and emphasizes the importance of harvest time in producing high-quality sprout vegetables.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.