• 제목/요약/키워드: natural language process

검색결과 249건 처리시간 0.031초

언어함수를 이용한 영문 생성기의 구현에 관한 연구 (A study on Implementation of English Sentence Generator using Lexical Functions)

  • 정희연;김희연;이웅재
    • 인터넷정보학회논문지
    • /
    • 제1권2호
    • /
    • pp.49-59
    • /
    • 2000
  • 컴퓨터의 발달과 인터넷 사용자의 증대로 자연어 처리의 연구에 관한 관심이 증대되고 있다. 그러나 대부분의 연구가 자연어 분석 및 이해에 집중되고 있어 자연어 생성에 관한 연구는 주목을 받지 못해 왔으며 자연어 생성을 자연어 분석의 역 과정으로 간단하게 생각하는 경향마저도 있다. 하지만 Web상에서의 다국어간 번역 자연어 인터페이스 자연어 검색 시스템 등 자연어처리에 관한 필요성이 증가함에 따라 자연어 생성의 필요성도 자연히 증가하고 있는 실정이며 좀 더 체계적인 자연어 생성 시스템 개발을 위해서는 자연어 생성에 관한 보다 구체적인 알고리즘에 관한 연구가 필요하다. 본 논문에서는 영문 생성에 있어서 보다 자연스러운 문장을 생성하기 위한 알고리즘을 제안하며 특히 Igor Mel'uk (Mel'uk & Zholkovsky, 1988)의 어휘 함수(LFs)를 이용한 어휘 결합을 통하여 절 길이의 설명문을 생성하는 영문 생성기의 구현에 대하여 논한다.

  • PDF

거대언어모델 기반 로봇 인공지능 기술 동향 (Technical Trends in Artificial Intelligence for Robotics Based on Large Language Models)

  • 이준기;박상준;김낙우;김에덴;고석갑
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.95-105
    • /
    • 2024
  • In natural language processing, large language models such as GPT-4 have recently been in the spotlight. The performance of natural language processing has advanced dramatically driven by an increase in the number of model parameters related to the number of acceptable input tokens and model size. Research on multimodal models that can simultaneously process natural language and image data is being actively conducted. Moreover, natural-language and image-based reasoning capabilities of large language models is being explored in robot artificial intelligence technology. We discuss research and related patent trends in robot task planning and code generation for robot control using large language models.

지능적 정보처리를 위한 퍼지추론기관의 구축 (Development of Fuzzy Inference Mechanism for Intelligent Data and Information Processing)

  • 송영배
    • Spatial Information Research
    • /
    • 제7권2호
    • /
    • pp.191-207
    • /
    • 1999
  • 공간과 관련된 의사결정문제 해결에 필요한 취득가능한 자료나 정보는 불완전하거나 부정확하며, 많은 부분 자연산어(natural language)로 기술되어 있다. 이 같은 정보들을 컴퓨터를 이용하여 처리하기 위해서는 결국 컴퓨터로 하여금 인간이 사용하는 자연어를 이해할 수 있도록 애매한 특성의 언어값(Linguistic value)을 정량적으로 기술할 필요가 있다. 이를 위해 퍼지집합(fuzzy set) 이론을 퍼지논리(fuzzy logic)가 대표적인 방법론으로 이용되고 있다. 본 논문에서는 부정확하거나 불명확한 자료 및 정보를 기반으로 의사결정문제를 지능적으로 처리하기위해 사용자가 가장 이해하기 쉬운 자연어로 『언어모델』을 구축하고, 평가사안이나 의사결정문제가 불명확하게 서술될 경우 컴퓨터를 이용한 구조화 및 추론을 통한 문제해결이 가능하도록 퍼지추론기관구축을 위한 일련의 논리적 개념과 구축과정을 연구하였다.

  • PDF

자연어 질의가 가능한 퍼지 기반 지능형 전자상거래 검색 에이전트 (Fuzzy Theory based Electronic Commerce Navigation Agent that can Query by Natural Language)

  • 김명순;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.270-273
    • /
    • 2001
  • In this paper, we proposed the intelligent navigation agent model for successive electronic commerce management. For allowing intelligence, we used fuzzy theory. Fuzzy theory is very useful method where keywords have vague conditions and system must process that conditions. So, using theory, we proposed the model that can process the vague keywords effectively. Through the this, we verified that we can get the more appropriate navigation result than any other crisp retrieval keywords condition.

  • PDF

Language Modeling Approaches to Information Retrieval

  • Banerjee, Protima;Han, Hyo-Il
    • Journal of Computing Science and Engineering
    • /
    • 제3권3호
    • /
    • pp.143-164
    • /
    • 2009
  • This article surveys recent research in the area of language modeling (sometimes called statistical language modeling) approaches to information retrieval. Language modeling is a formal probabilistic retrieval framework with roots in speech recognition and natural language processing. The underlying assumption of language modeling is that human language generation is a random process; the goal is to model that process via a generative statistical model. In this article, we discuss current research in the application of language modeling to information retrieval, the role of semantics in the language modeling framework, cluster-based language models, use of language modeling for XML retrieval and future trends.

보건의료 빅데이터에서의 자연어처리기법 적용방안 연구: 단어임베딩 방법을 중심으로 (A Study on the Application of Natural Language Processing in Health Care Big Data: Focusing on Word Embedding Methods)

  • 김한상;정여진
    • 보건행정학회지
    • /
    • 제30권1호
    • /
    • pp.15-25
    • /
    • 2020
  • While healthcare data sets include extensive information about patients, many researchers have limitations in analyzing them due to their intrinsic characteristics such as heterogeneity, longitudinal irregularity, and noise. In particular, since the majority of medical history information is recorded in text codes, the use of such information has been limited due to the high dimensionality of explanatory variables. To address this problem, recent studies applied word embedding techniques, originally developed for natural language processing, and derived positive results in terms of dimensional reduction and accuracy of the prediction model. This paper reviews the deep learning-based natural language processing techniques (word embedding) and summarizes research cases that have used those techniques in the health care field. Then we finally propose a research framework for applying deep learning-based natural language process in the analysis of domestic health insurance data.

자연언어처리와 인지 (Natural Language Processing and Cognition)

  • 이정민
    • 인지과학
    • /
    • 제3권2호
    • /
    • pp.161-174
    • /
    • 1992
  • 이 논의는 자연언어처리의 발전과정을 보이면서 그것이 정보 및 인지문제와 어떻게 밀접히 관련되는지를 알아본다.언어사용자인 인간을 저장된 지식-즉 문법과 사전 및 세상에 관한 백과 사전적 사실의 정보를 표상하는 구조-을 이용해 프로그램에 따라 주어진 언어구조를 처리하는 처리자로 보는 계산 모형에 입각해 SHRDLU 등의 자연언어이해 프로그램이 발전하게 되나,화행과 관련된 믿음,취지,목표,의도 및 맥락의존적인 화용론적 요인들의 처리가 아직은 풀어나가야 할 숙제 다.언어,정보 및 인지는 상호 밀접히 관현되면서 그 연구가 과학 발전에 기초가 됨을 보이고자 한다.

Deep Lexical Semantics: The Ontological Ascent

  • Hobbs, Jerry R.
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.29-41
    • /
    • 2007
  • Concepts of greater and greater complexity can be constructed by building systems of entities, by relating other entities to that system with a figure-ground relation, by embedding concepts of figure-ground in the concept of change, by embedding that in causality, and by coarsening the granularity and beginning the process over again. This process can be called the Ontological Ascent. It pervades natural language discourse, and suggests that to do lexical semantics properly, we must carefully axiomatize abstract theories of systems of entities, the figure-ground relation, change, causality, and granularity. In this paper, I outline what these theories should look like.

  • PDF

자연어 처리 기법을 활용한 산업재해 위험요인 구조화 (Structuring Risk Factors of Industrial Incidents Using Natural Language Process)

  • 강성식;장성록;이종빈;서용윤
    • 한국안전학회지
    • /
    • 제36권1호
    • /
    • pp.56-63
    • /
    • 2021
  • The narrative texts of industrial accident reports help to identify accident risk factors. They relate the accident triggers to the sequence of events and the outcomes of an accident. Particularly, a set of related keywords in the context of the narrative can represent how the accident proceeded. Previous studies on text analytics for structuring accident reports have been limited to extracting individual keywords without context. We proposed a context-based analysis using a Natural Language Processing (NLP) algorithm to remedy this shortcoming. This study aims to apply Word2Vec of the NLP algorithm to extract adjacent keywords, known as word embedding, conducted by the neural network algorithm based on supervised learning. During processing, Word2Vec is conducted by adjacent keywords in narrative texts as inputs to achieve its supervised learning; keyword weights emerge as the vectors representing the degree of neighboring among keywords. Similar keyword weights mean that the keywords are closely arranged within sentences in the narrative text. Consequently, a set of keywords that have similar weights presents similar accidents. We extracted ten accident processes containing related keywords and used them to understand the risk factors determining how an accident proceeds. This information helps identify how a checklist for an accident report should be structured.

사용자와 실시간으로 감성적 소통이 가능한 한국어 챗봇 시스템 개발 (Development of a Korean chatbot system that enables emotional communication with users in real time)

  • 백성대;이민호
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.429-435
    • /
    • 2021
  • In this study, the creation of emotional dialogue was investigated within the process of developing a robot's natural language understanding and emotional dialogue processing. Unlike an English-based dataset, which is the mainstay of natural language processing, the Korean-based dataset has several shortcomings. Therefore, in a situation where the Korean language base is insufficient, the Korean dataset should be dealt with in detail, and in particular, the unique characteristics of the language should be considered. Hence, the first step is to base this study on a specific Korean dataset consisting of conversations on emotional topics. Subsequently, a model was built that learns to extract the continuous dialogue features from a pre-trained language model to generate sentences while maintaining the context of the dialogue. To validate the model, a chatbot system was implemented and meaningful results were obtained by collecting the external subjects and conducting experiments. As a result, the proposed model was influenced by the dataset in which the conversation topic was consultation, to facilitate free and emotional communication with users as if they were consulting with a chatbot. The results were analyzed to identify and explain the advantages and disadvantages of the current model. Finally, as a necessary element to reach the aforementioned ultimate research goal, a discussion is presented on the areas for future studies.