• Title/Summary/Keyword: natural language

Search Result 1,541, Processing Time 0.031 seconds

Analysis of Seasonal Importance of Construction Hazards Using Text Mining (텍스트마이닝을 이용한 건설공사 위험요소의 계절별 중요도 분석)

  • Park, Kichang;Kim, Hyoungkwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.305-316
    • /
    • 2021
  • Construction accidents occur due to a number of reasons-worker carelessness, non-adoption of safety equipment, and failure to comply with safety rules are some examples. Because much construction work is done outdoors, weather conditions can also be a factor in accidents. Past construction accident data are useful for accident prevention, but since construction accident data are often in a text format consisting of natural language, extracting construction hazards from construction accident data can take a lot of time and that entails extra cost. Therefore, in this study, we extracted construction hazards from 2,026 domestic construction accident reports using text mining and performed a seasonal analysis of construction hazards through frequency analysis and centrality analysis. Of the 254 construction hazards defined by Korea's Ministry of Land, Infrastructure, and Transport, we extracted 51 risk factors from the construction accident data. The results showed that a significant hazard was "Formwork" in spring and autumn, "Scaffold" in summer, and "Crane" in winter. The proposed method would enable construction safety managers to prepare better safety measures against outdoor construction accidents according to weather, season, and climate.

An Investigation on Digital Humanities Research Trend by Analyzing the Papers of Digital Humanities Conferences (디지털 인문학 연구 동향 분석 - Digital Humanities 학술대회 논문을 중심으로 -)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.1
    • /
    • pp.393-413
    • /
    • 2021
  • Digital humanities, which creates new and innovative knowledge through the combination of digital information technology and humanities research problems, can be seen as a representative multidisciplinary field of study. To investigate the intellectual structure of the digital humanities field, a network analysis of authors and keywords co-word was performed on a total of 441 papers in the last two years (2019, 2020) at the Digital Humanities Conference. As the results of the author and keyword analysis show, we can find out the active activities of Europe, North America, and Japanese and Chinese authors in East Asia. Through the co-author network, 11 dis-connected sub-networks are identified, which can be seen as a result of closed co-authoring activities. Through keyword analysis, 16 sub-subject areas are identified, which are machine learning, pedagogy, metadata, topic modeling, stylometry, cultural heritage, network, digital archive, natural language processing, digital library, twitter, drama, big data, neural network, virtual reality, and ethics. This results imply that a diver variety of digital information technologies are playing a major role in the digital humanities. In addition, keywords with high frequency can be classified into humanities-based keywords, digital information technology-based keywords, and convergence keywords. The dynamics of the growth and development of digital humanities can represented in these combinations of keywords.

A Study on the Current State of the Library's AI Service and the Service Provision Plan (도서관의 인공지능(AI) 서비스 현황 및 서비스 제공 방안에 관한 연구)

  • Kwak, Woojung;Noh, Younghee
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.1
    • /
    • pp.155-178
    • /
    • 2021
  • In the era of the 4th industrial revolution, public libraries need a strategy for promoting intelligent library services in order to actively respond to changes in the external environment such as artificial intelligence. Therefore, in this study, based on the concept of artificial intelligence and analysis of domestic and foreign artificial intelligence related trends, policies, and cases, we proposed the future direction of introduction and development of artificial intelligence services in the library. Currently, the library operates a reference information service that automatically provides answers through the introduction of artificial intelligence technologies such as deep learning and natural language processing, and develops a big data-based AI book recommendation and automatic book inspection system to increase business utilization and provide customized services for users. Has been provided. In the field of companies and industries, regardless of domestic and overseas, we are developing and servicing technologies based on autonomous driving using artificial intelligence, personal customization, etc., and providing optimal results by self-learning information using deep learning. It is developed in the form of an equation. Accordingly, in the future, libraries will utilize artificial intelligence to recommend personalized books based on the user's usage records, recommend reading and culture programs, and introduce real-time delivery services through transport methods such as autonomous drones and cars in the case of book delivery service. Service development should be promoted.

A Convergence Study of the Research Trends on Stress Urinary Incontinence using Word Embedding (워드임베딩을 활용한 복압성 요실금 관련 연구 동향에 관한 융합 연구)

  • Kim, Jun-Hee;Ahn, Sun-Hee;Gwak, Gyeong-Tae;Weon, Young-Soo;Yoo, Hwa-Ik
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.1-11
    • /
    • 2021
  • The purpose of this study was to analyze the trends and characteristics of 'stress urinary incontinence' research through word frequency analysis, and their relationships were modeled using word embedding. Abstract data of 9,868 papers containing abstracts in PubMed's MEDLINE were extracted using a Python program. Then, through frequency analysis, 10 keywords were selected according to the high frequency. The similarity of words related to keywords was analyzed by Word2Vec machine learning algorithm. The locations and distances of words were visualized using the t-SNE technique, and the groups were classified and analyzed. The number of studies related to stress urinary incontinence has increased rapidly since the 1980s. The keywords used most frequently in the abstract of the paper were 'woman', 'urethra', and 'surgery'. Through Word2Vec modeling, words such as 'female', 'urge', and 'symptom' were among the words that showed the highest relevance to the keywords in the study on stress urinary incontinence. In addition, through the t-SNE technique, keywords and related words could be classified into three groups focusing on symptoms, anatomical characteristics, and surgical interventions of stress urinary incontinence. This study is the first to examine trends in stress urinary incontinence-related studies using the keyword frequency analysis and word embedding of the abstract. The results of this study can be used as a basis for future researchers to select the subject and direction of the research field related to stress urinary incontinence.

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • Diagnosis and management of skin condition is a very basic and important function in performing its role for workers in the beauty industry and cosmetics industry. For accurate skin condition diagnosis and management, it is necessary to understand the skin condition and needs of customers. In this paper, we developed SCIS, a big data-based skin care information system that supports skin condition diagnosis and management using social media big data for skin condition diagnosis and management. By using the developed system, it is possible to analyze and extract core information for skin condition diagnosis and management based on text information. The skin care information system SCIS developed in this paper consists of big data collection stage, text preprocessing stage, image preprocessing stage, and text word analysis stage. SCIS collected big data necessary for skin diagnosis and management, and extracted key words and topics from text information through simple frequency analysis, relative frequency analysis, co-occurrence analysis, and correlation analysis of key words. In addition, by analyzing the extracted key words and information and performing various visualization processes such as scatter plot, NetworkX, t-SNE, and clustering, it can be used efficiently in diagnosing and managing skin conditions.

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.

Exploiting Chunking for Dependency Parsing in Korean (한국어에서 의존 구문분석을 위한 구묶음의 활용)

  • Namgoong, Young;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.291-298
    • /
    • 2022
  • In this paper, we present a method for dependency parsing with chunking in Korean. Dependency parsing is a task of determining a governor of every word in a sentence. In general, we used to determine the syntactic governor in Korean and should transform the syntactic structure into semantic structure for further processing like semantic analysis in natural language processing. There is a notorious problem to determine whether syntactic or semantic governor. For example, the syntactic governor of the word "먹고 (eat)" in the sentence "밥을 먹고 싶다 (would like to eat)" is "싶다 (would like to)", which is an auxiliary verb and therefore can not be a semantic governor. In order to mitigate this somewhat, we propose a Korean dependency parsing after chunking, which is a process of segmenting a sentence into constituents. A constituent is a word or a group of words that function as a single unit within a dependency structure and is called a chunk in this paper. Compared to traditional dependency parsing, there are some advantage of the proposed method: (1) The number of input units in parsing can be reduced and then the parsing speed could be faster. (2) The effectiveness of parsing can be improved by considering the relation between two head words in chunks. Through experiments for Sejong dependency corpus, we have shown that the USA and LAS of the proposed method are 86.48% and 84.56%, respectively and the number of input units is reduced by about 22%p.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.

Analysis of Research Trends in Elder Abuse Using Text Mining : Academic Papers from 2004 to 2021. (텍스트 마이닝 분석을 통한 노인학대 관련 연구 동향 분석 : 2004년~2021년까지 발행된 국내 학술논문을 중심으로)

  • Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.4
    • /
    • pp.25-40
    • /
    • 2022
  • This study aimed to understand the increasing number of elder abuses in South Korea, where entry into the super-aged society is imminent, by implementing text mining analysis. Korean Academic journals were obtained from 2004, the establishment year of the senior care agency, to 2021. We performed natural language processing of the titles, keywords, and abstracts and divided them into three segments of periods to identify latent meanings in the data. The results illustrated that the first section included 81 papers, the second 64, and the third 104 respectively, averaging 13.8 annually, which increased its numbers from 2014 until the decrease below the annual average in 2020. Word frequency demonstrated that the common keywords of the entire segments were 'elder abuse,' 'elders,' 'influences,' 'factors,' 'recognition,' 'family,' 'society,' 'prevention plans,' 'experiences,' 'abused elders,' 'abuse prevention,' 'depression,' etc., in consecutive order. TF-IDF indicated that 'influences,' 'recognition,' 'society,' 'prevention plans,' 'abuse prevention,' 'experiences,' 'depression,' etc., were the common keywords of all divisions. Network text analysis displayed that the commonly represented keywords were 'elder abuse,' 'elders,' 'influences,' 'factors,' 'characteristics,' 'recognition,' 'family,' 'prevention plans,' 'society,' 'abuse prevention,' and 'experiences' in the entire sections. concor analysis presented that the first segment consisted of 5 groups, the second 7, and the third 6. We suggest future directions for elder abuse research based on the results.