• 제목/요약/키워드: natural isotope fractionation

검색결과 14건 처리시간 0.02초

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • 제51권6호
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

우라늄 동위원소의 분석과 활용에 대한 고찰 (A Review on Analysis of Natural Uranium Isotopes and Their Application)

  • 김영민
    • 자원환경지질
    • /
    • 제56권5호
    • /
    • pp.547-555
    • /
    • 2023
  • 분석 기기의 발달과 더불어 자연 우라늄 동위원소 비(238U/235U)와 분별작용에 대한 연구가 점차 증가하고 있다. MC-ICP-MS을 이용한 우라늄 동위원소의 정밀한 분석이 가능해지면서 137.88의 고정된 값으로 여겨졌던 자연 물질의 238U/235U 비가 우라늄 동위원소 분별작용에 의해 최대 수 퍼밀까지 변화할 수 있다는 것이 밝혀졌다. 본 고찰에서는 우라늄 동위원소의 분석과 표기에 대해 간략하게 설명한 후, 지구 상 주요 물질들의 우라늄 동위원소 값(δ238U)의 변화와 지구화학적 특징을 살펴본다. 특히, 우라늄 광상의 유형과 특징에 따른 우라늄 동위원소 조성 연구 사례를 소개하고, 상대적으로 큰 δ238U 범위를 야기하는 우라늄 동위원소 분별작용에 대해 논의한다. 이를 바탕으로 고준위 방사성 폐기물 처분장의 모의 실험을 위한 자연 유사 모델로서 우라늄 광상이 갖는 연구 의의에 대해 고찰한다.

Increase in δ15N of Nitrate through Kinetic Isotope Fractionation Associated with Denitrification in Soil

  • Choi, Woo-Jung;Lee, Sang-Mo;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제44권3호
    • /
    • pp.135-139
    • /
    • 2001
  • To observe the changes in isotopic composition (${\delta}^{15}N$) of $NO_3{^-}$ during denitrification, an incubation experiment using soil treated with nitrification inhibitor (2-chloro-6-trichloromethyl-pyridine) under water-saturated condition was conducted for 153 h. The $NO_3-N$ concentration decreased from 73.3 to $20.6mg\;kg^{-1}$ during the incubation period, with denitrification rate constant of $0.00905h^{-1}$, and ${\delta}^{15}N$ values of $NO_3-N$ increased from +0.9 to +25.5‰ with decreasing the $NO_3-N$ concentration. The increase in the ${\delta}^{15}N$ values of $NO_3-N$ is due to kinetic isotope fractionation, which always results in $^{15}N$ enrichment of the substrate. The isotopic fractionation factor calculated in this study was 1.0196, an indication that 1.96% more $^{14}NO_3{^-}$ reacted at a given time interval than a comparable number of $^{15}NO_3{^-}$. The ${\delta}^{15}N$ values measured through the incubation study showed a good agreement with the results calculated from the Fochts isotope fractionation model. Our results suggest that when the ${\delta}^{15}N$ of $NO_3{^-}$ is used for tracing the fate of N, the kinetic isotope fractionation associated with denitrification must be taken into consideration.

  • PDF

수산 · 양식 생물 연구를 위한 안정동위원소 분석 기법의 소개와 활용 (Application of Stable Isotope Analysis for Aquaculture Organisms)

  • 원은지;윤희영;최보형;신경훈
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.61-73
    • /
    • 2022
  • 안정동위원소 분석 기법(Stable isotope analysis, SIA)은 환경과학, 생태학, 지구생물화학, 법의학, 고고학 등 다양한 연구 분야에 활용되고 있다. 본 총설에서는 수산 및 양식 연구에 안정동위원소 비 분석 기법을 활용하기 위해 필요한 배경 지식을 소개하고자 한다. 특히, 자연값(natural abundance)을 이용하는 연구에 초점을 두었고 원소가 생물의 조직으로 통합되는 과정에서 발생하는 분별작용(동위원소 비의 변화)에 대한 원리와 안정동위원소 비가 유용한 도구로서 어떤 목적으로 생태, 환경학 분야에 이용되는지, 나아가 수산 및 양식 분야에 활용 가능한 예들을 제시하고자 한다. 본 논문을 통한 안정동위원소 분야의 이해로 향후 수산학 및 양식 연구에서 안정 동위원소 비의 다양한 활용이 기대된다.

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Ginseng authenticity testing by measuring carbon, nitrogen, and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type

  • Chung, Ill-Min;Lee, Taek-Jun;Oh, Yong-Taek;Ghimire, Bimal Kumar;Jang, In-Bae;Kim, Seung-Hyun
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.195-200
    • /
    • 2017
  • Background: The natural ratios of carbon (C), nitrogen (N), and sulfur (S) stable isotopes can be varied in some specific living organisms owing to various isotopic fractionation processes in nature. Therefore, the analysis of C, N, and S stable isotope ratios in ginseng can provide a feasible method for determining ginseng authenticity depending on the cultivation land and type of fertilizer. Methods: C, N, and S stable isotope composition in 6-yr-old ginseng roots (Jagyeongjong variety) was measured by isotope ratio mass spectrometry. Results: The type of cultivation land and organic fertilizers affected the C, N, and S stable isotope ratio in ginseng (p < 0.05). The ${\delta}^{15}N_{AIR}$ and ${\delta}^{34}S_{VCDT}$ values in ginseng roots more significantly discriminated the cultivation land and type of organic fertilizers in ginseng cultivation than the ${\delta}^{13}C_{VPDB}$ value. The combination of ${\delta}^{13}C_{VPDB}$, ${\delta}^{15}N_{AIR}$, or ${\delta}^{34}S_{VCDT}$ in ginseng, except the combination ${\delta}^{13}C_{VPDB}-^{34}S_{VCDT}$, showed a better discrimination depending on soil type or fertilizer type. Conclusion: This case study provides preliminary results about the variation of C, N, and S isotope composition in ginseng according to the cultivation soil type and organic fertilizer type. Hence, our findings are potentially applicable to evaluate ginseng authenticity depending on cultivation conditions.

Principles and application of SNIF-NMR

  • Kwon, Hyeok;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제23권4호
    • /
    • pp.98-103
    • /
    • 2019
  • SNIF-NMR is one of the analytical methods used to discriminate impurities in food and natural products. To determine the origin of compounds, SNIF-NMR utilizes frequency of deuterium in site specific fractionated sample using nuclear magnetic resonance. Also, SNIF-NMR is currently used to evaluate the authenticity of various foods such as wine, vanillin and oil, and is known to provide more accurate information than other analytical methods. In this review, the basic principles and practical examples of SNIF-NMR is presented.

핵시설로부터 발생되는 방사성탄소 분석기술 및 감시 (Monitoring and Analytical Techniques for the Discharged Radiocarbon from Nuclear Facility)

  • 천상기;김낙배;김건한;조수영;박찬조;이종대;신장식
    • 분석과학
    • /
    • 제13권6호
    • /
    • pp.693-698
    • /
    • 2000
  • 본 일련의 실험은 가동중인 핵시설 주위의 자연환경내 방사성탄소 농도준위 변화의 간접적인 추적을 통하여 체계적이고 장기간에 걸친 환경감시 목적으로 수행되었다. 나무 나이테 분석을 이용한 방사성탄소 농도 측정 결과는 핵시설 가동 후 농도 준위가 증가한 것을 나타내었으며, 그 변화는 발전량과 밀접한 상관관계가 있음을 알 수 있었다. 한편 섬유소 처리를 통한 안정 동위원소비, ${\delta}^{13}C$을 측정한 결과는 -30‰을 나타내었으며, 이 값은 수동법 및 능동법으로 채취한 대기 시료중의 $^{13}C$값 -17‰ 및 -8‰과는 매우 다른 결과를 나타내었다. 이런 차이는 광합성에 의한 동위원소 분별효과라고 가정할 수 있으나, 이 문제는 심도있는 연구가 필요하다.

  • PDF

플라이스토세 전기(2.4-1.25 Ma) 동안 베링해 중부 대륙사면 지역의 규조 골격내 유기물 질소동위원소 값에 의한 질산염 이용률의 변화 복원 (Reconstruction of Nitrate Utilization Rate Change Based on Diatom-bound Nitrogen Isotope Values in the Central Slope Area of the Bering Sea during the Early Pleistocene (2.4-1.25 Ma))

  • 김성한;김부근
    • Ocean and Polar Research
    • /
    • 제38권3호
    • /
    • pp.195-207
    • /
    • 2016
  • Because the high latitude region in the North Pacific is characterized by high primary production in the surface water enriched with nutrients, it is important to understand the variation of surface water productivity and associated nutrient variability in terms of global carbon cycle. Surface water productivity change or its related nutrient utilization rate during the Northern Hemisphere Glaciation (NHG; ca. 2.73 Ma) has been reported, but little is known about such circumstances under gradual climate cooling since the NHG. Bulk nitrogen isotope (${\delta}^{15}N_{bulk}$) of sedimentary organic matter has been used for the reconstruction of nutrient utilization rate in the surface water. However, sedimentary organic matter experiences diagenesis incessantly during sinking through the water column and after burial within the sediments. Thus, in this study we examine the degree of nitrate utilization rate during the early Pleistocene (2.4-1.25 Ma) since the NHG, using the diatom-bound nitrogen isotope (${\delta}^{15}N_{db}$), which is known to be little influenced by diagenesis, from Site U1343 in the Bering slope area. ${\delta}^{15}N_{db}$ values range from ~0.5 to 5.5‰, which is lower than ${\delta}^{15}N_{bulk}$ values, but they vary with larger amplitude. Variation patterns between ${\delta}^{15}N_{db}$ values and biogenic opal concentration are generally consistent, which indicates that the nitrate utilization rate is closely related to opal productivity change in the surface water. A positive correlation between opal productivity and nitrate utilization rate was observed, which is different from the other high latitude regions in the North Pacific. The main reason for this contrasting relationship is that the primary production in the surface water at Site U1343 is influenced mostly by the degree of sea ice formation. Still, although concerns about diagenetic alteration have been avoided by using ${\delta}^{15}N_{db}$, the effects of the preservation state of biogenic opal and the species-dependent isotopic fractionation on ${\delta}^{15}N_{db}$ should be assessed in the future studies.

pH가 낮은 탄산수의 CO2 탈기에 따른 용존탄소동위원소 변화 (Changes of carbon-13 Isotope of Dissolved Inorganic Carbon Within Low-pH CO2-rich Water during CO2 Degassing)

  • 채기탁;유순영;김찬영;박진영;방하은;이인혜;고동찬;신영재;오진만
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권3호
    • /
    • pp.24-35
    • /
    • 2019
  • It is known that ${\delta}^{13}C_{DIC}$ (carbon-13 isotope of dissolved inorganic carbonate (DIC) ions) of water increases when dissolved $CO_2$ degases. However, ${\delta}^{13}C_{DIC}$ could decrease when the pH of water is lower than 5.5 at the early stage of degassing. Laboratory experiments were performed to observe the changes of ${\delta}^{13}C_{DIC}$ as $CO_2$ degassed from three different artificial $CO_2$-rich waters (ACWs) in which the initial pH was 4.9, 5.4, and 6.4, respectively. The pH, alkalinity and ${\delta}^{13}C_{DIC}$ were measured until 240 hours after degassing began and those data were compared with kinetic isotope fractionation calculations. Furthermore, same experiment was conducted with the natural $CO_2$-rich water (pH 4.9) from Daepyeong, Sejong City. As a result of experiments, we could observe the decrease of DIC and increase of pH as the degassing progressed. ACW with an initial pH of 6.4, ${\delta}^{13}C_{DIC}$ kept increasing but, in cases where the initial pH was lower than 5.5, ${\delta}^{13}C_{DIC}$ decreased until 6 hours. After 6 hours ${\delta}^{13}C_{DIC}$ increased within all cases because the $CO_2$ degassing caused pH increase and subsequently the ratio of $HCO_3{^-}$ in solution. In the early stage of $CO_2$ degassing, the laboratory measurements were well matched with the calculations, but after about 48 hours, the experiment results were deviated from the calculations, probably due to the equilibrium interaction with the atmosphere and precipitation of carbonates. The result of this study may be not applicable to all natural environments because the pressure and $CO_2$ concentration in headspace of reaction vessels was not maintained constant as well as the temperature. Nevertheless, this study provides fundamental knowledge on the ${\delta}^{13}C_{DIC}$ evolution during $CO_2$ degassing, and therefore it can be utilized in the studies about carbonated water with low pH and the monitoring of geologic carbon sequestration.