• 제목/요약/키워드: natural insecticide

검색결과 72건 처리시간 0.03초

Strategy for Insecticide Resistance Management Approach to IPM

  • Motoyama, Naoki;Dauterman, W.C.
    • 한국응용곤충학회지
    • /
    • 제31권3호
    • /
    • pp.314-327
    • /
    • 1992
  • Insecticide resistance is a serious is a serious threat to IPM, resulting in various adverse effects not to mention the loss of yield in agriculture. One approach to counter the problem is the disruption of resistance mechanisms. This can be achieved by (1) compounds which show a negative correlation with resistance at the site of action, (2) specific metabolic inhibitors which serve as synergists, or (3) a certain combination of two insecticides producing a joint action. This approach, however, requires certain precautions for the side effects may cause an increase in toxicity to mammals. Owing to the recent advances in theoretical studies on resistance management employing computer simulation and mathematical models, a few principles to reduce the risk of development of resistance have been clarified. They are helpful in designing operational strategies with regard to, for instance, insecticide doses to be applied, mode of application, and choice and nature of the insecticide(s) to be used. For restoration of insecticide susceptibility of a resistant population, reintroduction of susceptible individuals to the resistant population is feasible when certain conditions are met. Natural enemies which developed resistance to insecticides can be an important component of IPM as has been shown in the pest management in apple orchards. After all, the implementation of a successful resistance management program depends upon cooperation between different sigments of the agricutural community. Although resistance is a preadaptive phenomenon, in some cases spontaneous loss of resistance does occur without contamination by susceptible individuals. The instability of resistance in these insects implies the possible existence of a switch machanism controlling the expression of resistance gene(s). Elucidation of such a mechanism may eventually provide us with a new technical approach with which we can combat the problem of insecticide resistance.

  • PDF

말라리아 위험지역에서 채집된 말라리아 매개모기 Anopheles sinensis의 피레스로이드계 저항성 대립형질 분석 (Analysis of Pyrethroid Resistance Allele in Malaria Vector Anopheles sinensis from Malaria High-risk Area)

  • 최광식;이승열;황도운;김흥철;장규식;정희영
    • 농약과학회지
    • /
    • 제20권4호
    • /
    • pp.286-292
    • /
    • 2016
  • 우리나라 경기북부지역은 말라리아 위험지역으로 말라리아는 주로 이 지역의 우점종인 Anopheles sinensis에 의해 감염되는 것으로 알려져 있다. 이들에 대한 방제는 주로 피레스로이드계 살충제가 사용되고 있고 지금까지의 살충제 저항성 조사에서 지속적으로 저항성이 나타나고 있다. 이에 우리나라 말라리아 주요 매개모기인 An. sinensis의 피레스로이드계 살충제 저항성을 조사하여 말라리아 위험지역에서의 매개모기 방제에 대한 실태를 조사하고자 한다. 본 연구를 위하여 파주, 김포, 강화 세 지역에서 채집된 An. sinensis를 DNA 염기서열 분석을 통하여 저항성 유전형질을 분석하였다. 파주는 동형 감수성 유전형질은 발견되지 않았고 모든 개체에서 저항성 유전형질을 가지는 것으로 조사되었다. 김포에서는 6.7%의 동형 감수성 유전형질과 93.3%의 이형 또는 동형 저항성 유전형질을 나타내었고 강화의 경우는 5.7%의 동형 감수성 유전형질과 94.3%의 이형 또는 동형 저항성 유전형질이 조사되었다. 본 연구 결과를 통해서 우리나라 말라리아 위험지역인 파주, 김포, 강화에서의 말라리아 주요매개 모기인 An. sinensis의 피레스로이드계 살충제 저항성은 이전 조사에서보다 매우 증가한 것으로 나타났다. 따라서 이 지역의 말라리아 매개모기 방제를 위해서는 피레스로이드계 살충제 저항성 관리가 시급한 것으로 사료된다.

꽃노랑총채벌레 종합방제 - 화학농약 처리 후 안정적 천적 투입 시기 (Integral Pest Management of the Western Flower Thrips, Frankliniella occidentalis: Optimal Time to Introduce a Natural Predator after Chemical Insecticide Treatment)

  • 김철영;이동현;이동희;함은혜;김용균
    • 한국응용곤충학회지
    • /
    • 제61권4호
    • /
    • pp.519-528
    • /
    • 2022
  • 시설재배지 고추를 가해하는 꽃노랑총채벌레(Frankliniella occidentalis)를 대상으로 미끌애꽃노린재(Orius laevigatus)를 이용한 생물적 방제가 검토되고 있다. 그러나 대상 해충의 빠른 집단 성장은 화학 살충제의 투입이 때에 따라 요구된다. 본 연구는 화학 살충제와 천적의 이상적 종합 방제를 구현하기 위한 목적으로 선택성이 높은 살충제 선발 및 이들 살충제 처리 이후 미끌애꽃노린재의 안전한 재투입 시기를 결정하기 위해 수행되었다. 첫째로 꽃노랑총채벌레에 방제 효과가 높은 상용 살충제가 선발되었다. 총 17종류의 상용 살충제 가운데 5종류(pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, chlorpyrifos) 주성분을 갖는 상용 살충제가 꽃노랑총채벌레에 우수한 방제효과를 주는 약제로 선발되었다. 이들 5종류의 살충제에 대해서 미끌애꽃노린재의 감수성 반응은 꽃노랑총채벌레와 상이하였다. 특별히 아바멕틴과 스피네토람이 유기인계 또는 네오니코티노이드에 비해 상대적으로 낮은 독성을 보였다. 이들 5종류의 살충제 처리 이후 잔류 독성을 미끌애꽃노린재를 이용하여 생물검정한 결과 유기인계 및 네오니코티노이드 약제는 비교적 오랜 기간 독성을 유지하지만, 아바멕틴과 스피네토람 약제의 경우 3일 이후에는 대상 천적에 피해를 주지 않는 것으로 나타났다. 이러한 잔류독성결과는 LC-MS/MS를 이용한 농약 잔류량 화학분석을 통해 뒷받침되었다. 이상의 결과는 높은 밀도로 증가한 꽃노랑총채벌레에 대해서 이 해충에 살충성이 높은 아바멕틴 또는 스피네토람의 약제를 살포하고 이후 3일 지나 미끌애꽃노린재의 투입을 통해 대상 해충의 평균 밀도를 경제적피해수준 이하로 유지할 수 있다는 종합방제 기술을 제시하고 있다.

A Dipstick-Type Electrochemical Immunosensor for The Detection of The Organophosphorus Insecticide Fenthion

  • Cho, Young-Ae;Cha, Geun-Sig;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.743-746
    • /
    • 2005
  • A dipstick-type immunochemical biosensor for the detection of the organophosphorus insecticide fenthion was developed using a screen-printed electrode system as an amperometric transducer with polyclonal antibodies against fenthion as a bioreceptor. The assay of the biosensor involved competition between the pesticide in the sample and pesticide-glucose oxidase conjugate for binding to the antibody immobilized on the membrane. This was followed by measurement of the activity of the bound enzyme by the supply of the enzyme substrate (glucose) and amperometric determination of the enzyme reaction product ($H_2O_2$). The activity of the bound enzyme was inversely proportional to the concentration of pesticide. The optimized sensor system showed a linear response against the logarithm of the pesticide concentration ranging from $10^{-2}$ to $10^3\;{\mu}g/L$.

Different tolerance of zooplankton communities to insecticide application depending on the species composition

  • Sakamoto, Masaki;Tanaka, Yoshinari
    • Journal of Ecology and Environment
    • /
    • 제36권2호
    • /
    • pp.141-150
    • /
    • 2013
  • Natural zooplankton communities are composed of many different species at different trophic levels in the aquatic food web. Several researchers have reported that in mesocosm/enclosure experiments, larger cladocerans tend to be more sensitive to carbamate insecticides than smaller ones (Daphnia > Moina, Diaphanosoma > Bosmina). In contrast, results from individual-level laboratory tests have suggested that large cladoceran species are more tolerant than small species. To clarify this inconsistency, we conducted a microcosm experiment using model zooplankton communities with different species compositions, where animals were exposed to lethal (near to the 24 h LC50, concentration estimated to kill 50% of individuals within 24-h for the small cladoceran Bosmina) and lower, sublethal concentrations of carbaryl. In the experiment, population densities of the small cladocerans (Bosmina and Bosminopsis) decreased subsequent to the applications of chemical, but no impacts were observed on the large cladoceran Daphnia. Our results supported the reports of previous individual level toxicity tests, and indicated that the sensitivity of zooplankton to the insecticide was unchanged by biological interactions but the response of population can be modified by compensation of population through hatching from resting eggs and/or the persistence of insecticide in the systems.

Movement Pattern Recognition of Medaka for an Insecticide: A Comparison of Decision Tree and Neural Network

  • Kim, Youn-Tae;Park, Dae-Hoon;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.58-65
    • /
    • 2007
  • Behavioral sequences of the medaka (Oryzias latipes) were continuously investigated through an automatic image recognition system in response to medaka treated with the insecticide and medaka not treated with the insecticide, diazinon (0.1 mg/l) during a 1 hour period. The observation of behavior through the movement tracking program showed many patterns of the medaka. After much observation, behavioral patterns were divided into four basic patterns: active-smooth, active-shaking, inactive-smooth, and inactive-shaking. The "smooth" and "shaking" patterns were shown as normal movement behavior. However, the "shaking" pattern was more frequently observed than the "smooth" pattern in medaka specimens that were treated with insecticide. Each pattern was classified using classification methods after the feature choice. It provides a natural way to incorporate prior knowledge from human experts in fish behavior and contains the information in a logical expression tree. The main focus of this study was. to determine whether the decision tree could be useful for interpreting and classifying behavior patterns of the medaka.

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.

Insect natural enemies as bioindicators in rice paddies

  • Ueno, Takatoshi
    • 농업과학연구
    • /
    • 제39권4호
    • /
    • pp.545-553
    • /
    • 2012
  • In Asia, including Japan and Korea, rice paddies occupy the largest cultivated area in agricultural land. Rice paddies provide the habitats for many organisms including endemic species, sustaining high biodiversity. Insect natural enemies inhabiting rice paddies have an important function for rice production as agents of 'ecosystem services' because they play a major role in suppressing rice pests. The diversity and abundance of natural enemies can be a good index reflecting the 'healthiness' of agro-ecosystem services in rice paddies. The present study investigates whether insect natural enemies could be good biological indicators for general arthropod biodiversity and agricultural practice. First, the concept of ideal bio-indicators was summarized. The strategy to explore and select such bio-indicators was then proposed. Lastly, field survey was made to evaluate the abundance and biodiversity of natural enemies in Japanese rice paddies where chemical inputs, i.e., insecticide use, were different. The results showed that reduction of chemical inputs led to an increase in species richness or diversity of natural enemies including parasitoids and predators. Then, the data were analyzed to examine suitable indicator species to assess environmental soundness of agricultural practice and biodiversity in rice paddies. The density of several species of natural enemies did respond both to pesticide use and to general arthropod biodiversity. The analyses thus have indicated that natural enemies can be suitable as bio-indicators. Usefulness of indicator species in rice paddies is discussed in the context of ecologically sound agriculture.