• Title/Summary/Keyword: natural insecticide

Search Result 72, Processing Time 0.024 seconds

Strategy for Insecticide Resistance Management Approach to IPM

  • Motoyama, Naoki;Dauterman, W.C.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.314-327
    • /
    • 1992
  • Insecticide resistance is a serious is a serious threat to IPM, resulting in various adverse effects not to mention the loss of yield in agriculture. One approach to counter the problem is the disruption of resistance mechanisms. This can be achieved by (1) compounds which show a negative correlation with resistance at the site of action, (2) specific metabolic inhibitors which serve as synergists, or (3) a certain combination of two insecticides producing a joint action. This approach, however, requires certain precautions for the side effects may cause an increase in toxicity to mammals. Owing to the recent advances in theoretical studies on resistance management employing computer simulation and mathematical models, a few principles to reduce the risk of development of resistance have been clarified. They are helpful in designing operational strategies with regard to, for instance, insecticide doses to be applied, mode of application, and choice and nature of the insecticide(s) to be used. For restoration of insecticide susceptibility of a resistant population, reintroduction of susceptible individuals to the resistant population is feasible when certain conditions are met. Natural enemies which developed resistance to insecticides can be an important component of IPM as has been shown in the pest management in apple orchards. After all, the implementation of a successful resistance management program depends upon cooperation between different sigments of the agricutural community. Although resistance is a preadaptive phenomenon, in some cases spontaneous loss of resistance does occur without contamination by susceptible individuals. The instability of resistance in these insects implies the possible existence of a switch machanism controlling the expression of resistance gene(s). Elucidation of such a mechanism may eventually provide us with a new technical approach with which we can combat the problem of insecticide resistance.

  • PDF

Analysis of Pyrethroid Resistance Allele in Malaria Vector Anopheles sinensis from Malaria High-risk Area (말라리아 위험지역에서 채집된 말라리아 매개모기 Anopheles sinensis의 피레스로이드계 저항성 대립형질 분석)

  • Choi, Kwang Shik;Lee, Seung-Yeol;Hwang, Do-Un;Kim, Heung-Chul;Chang, Kyu-Sik;Jung, Hee-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.286-292
    • /
    • 2016
  • Malaria is mainly transmitted by Anopheles sinensis which is dominant species in malaria high-risk area, northern part of Gyeonggi province in Korea. Pyrethroid insecticide is used for malaria vector, An. sinensis in Korea and the previous investigation consistently reported insecticide resistance from the vector. This study investigated insecticide susceptible and resistant alleles from An. sinensis and the status of malaria vector control in malaria high-risk area. For the study, An. sinensis collected from Paju, Gimpo and Ganghwa were sequenced for kdr detection. In Paju, there was no homozygous susceptibility and all of tested samples had homozygous or heterozygous resistance. There were 6.7% for susceptible homozygosity and 93.3% for resistant homozygosity or heterozygosity in Gimpo. Furthermore, the percentages of homozygous susceptibility and homozygous or heterozygous resistance in Ganghwa were 5.7% and 94.3% respectively. The results showed that the frequency of the insecticide resistance from An. sinensis in malaria high-risk area were increased much more than the previous investigation. Hence, this study suggests that malaria vector control programs should have to be prepared for the management of pyrethroid insecticide resistance.

Integral Pest Management of the Western Flower Thrips, Frankliniella occidentalis: Optimal Time to Introduce a Natural Predator after Chemical Insecticide Treatment (꽃노랑총채벌레 종합방제 - 화학농약 처리 후 안정적 천적 투입 시기)

  • Chulyoung, Kim;Donghyun, Lee;Donghee, Lee;Eunhye, Ham;Yonggyun, Kim
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.519-528
    • /
    • 2022
  • The western flower thrips, Frankliniella occidentalis, infests the hot pepper cultivated in greenhouses and has been considered to be controlled by a natural enemy, Orius laevigatus. However, sporadic outbreaks of the thrips due to fast population growth occasionally need chemical insecticide treatments. This study was designed to develop an optimal integrated pest management (IPM) by using selective insecticides along with a safe re-introduction technique of the natural enemy after the chemical insecticide treatment. First, chemical insecticides were screened to select the high toxic commercial products against F. occidentalis. Five insecticides containing active components (pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, and chlorpyrifos) were selected among 17 commercial products. These five selected insecticides gave different toxic properties to the natural enemy, O. laevigatus. Especially, abamectin and spinetoram gave relatively low toxicity to the natural enemy compared to organophosphate or neonicotinoid. Furthermore, the five selected insecticides were assessed in their residual toxicities against O. laevigatus. Organophosphate and neonicotinoid insecticides showed relatively longer residual toxicity compared to abamectin and spinosads. Indeed, abamectin or spinetoram did not give any significant toxicity to O. laevigatus after 3 days post-treatment. These residual effects were further supported by the assessment of the chemical residue analysis of the insecticides using LC-MS/MS. These results suggest an IPM technology: (1) chemical treatment of abamectin or spinetoram against sporadic outbreaks of F. occidentalis infesting hot pepper and (2) re-introduction of O. laevigatus to the crops after 3 days post-treatment to depress the equilibrium density below an economic injury level.

A Dipstick-Type Electrochemical Immunosensor for The Detection of The Organophosphorus Insecticide Fenthion

  • Cho, Young-Ae;Cha, Geun-Sig;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.743-746
    • /
    • 2005
  • A dipstick-type immunochemical biosensor for the detection of the organophosphorus insecticide fenthion was developed using a screen-printed electrode system as an amperometric transducer with polyclonal antibodies against fenthion as a bioreceptor. The assay of the biosensor involved competition between the pesticide in the sample and pesticide-glucose oxidase conjugate for binding to the antibody immobilized on the membrane. This was followed by measurement of the activity of the bound enzyme by the supply of the enzyme substrate (glucose) and amperometric determination of the enzyme reaction product ($H_2O_2$). The activity of the bound enzyme was inversely proportional to the concentration of pesticide. The optimized sensor system showed a linear response against the logarithm of the pesticide concentration ranging from $10^{-2}$ to $10^3\;{\mu}g/L$.

Different tolerance of zooplankton communities to insecticide application depending on the species composition

  • Sakamoto, Masaki;Tanaka, Yoshinari
    • Journal of Ecology and Environment
    • /
    • v.36 no.2
    • /
    • pp.141-150
    • /
    • 2013
  • Natural zooplankton communities are composed of many different species at different trophic levels in the aquatic food web. Several researchers have reported that in mesocosm/enclosure experiments, larger cladocerans tend to be more sensitive to carbamate insecticides than smaller ones (Daphnia > Moina, Diaphanosoma > Bosmina). In contrast, results from individual-level laboratory tests have suggested that large cladoceran species are more tolerant than small species. To clarify this inconsistency, we conducted a microcosm experiment using model zooplankton communities with different species compositions, where animals were exposed to lethal (near to the 24 h LC50, concentration estimated to kill 50% of individuals within 24-h for the small cladoceran Bosmina) and lower, sublethal concentrations of carbaryl. In the experiment, population densities of the small cladocerans (Bosmina and Bosminopsis) decreased subsequent to the applications of chemical, but no impacts were observed on the large cladoceran Daphnia. Our results supported the reports of previous individual level toxicity tests, and indicated that the sensitivity of zooplankton to the insecticide was unchanged by biological interactions but the response of population can be modified by compensation of population through hatching from resting eggs and/or the persistence of insecticide in the systems.

Movement Pattern Recognition of Medaka for an Insecticide: A Comparison of Decision Tree and Neural Network

  • Kim, Youn-Tae;Park, Dae-Hoon;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • Behavioral sequences of the medaka (Oryzias latipes) were continuously investigated through an automatic image recognition system in response to medaka treated with the insecticide and medaka not treated with the insecticide, diazinon (0.1 mg/l) during a 1 hour period. The observation of behavior through the movement tracking program showed many patterns of the medaka. After much observation, behavioral patterns were divided into four basic patterns: active-smooth, active-shaking, inactive-smooth, and inactive-shaking. The "smooth" and "shaking" patterns were shown as normal movement behavior. However, the "shaking" pattern was more frequently observed than the "smooth" pattern in medaka specimens that were treated with insecticide. Each pattern was classified using classification methods after the feature choice. It provides a natural way to incorporate prior knowledge from human experts in fish behavior and contains the information in a logical expression tree. The main focus of this study was. to determine whether the decision tree could be useful for interpreting and classifying behavior patterns of the medaka.

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.

Insect natural enemies as bioindicators in rice paddies

  • Ueno, Takatoshi
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.545-553
    • /
    • 2012
  • In Asia, including Japan and Korea, rice paddies occupy the largest cultivated area in agricultural land. Rice paddies provide the habitats for many organisms including endemic species, sustaining high biodiversity. Insect natural enemies inhabiting rice paddies have an important function for rice production as agents of 'ecosystem services' because they play a major role in suppressing rice pests. The diversity and abundance of natural enemies can be a good index reflecting the 'healthiness' of agro-ecosystem services in rice paddies. The present study investigates whether insect natural enemies could be good biological indicators for general arthropod biodiversity and agricultural practice. First, the concept of ideal bio-indicators was summarized. The strategy to explore and select such bio-indicators was then proposed. Lastly, field survey was made to evaluate the abundance and biodiversity of natural enemies in Japanese rice paddies where chemical inputs, i.e., insecticide use, were different. The results showed that reduction of chemical inputs led to an increase in species richness or diversity of natural enemies including parasitoids and predators. Then, the data were analyzed to examine suitable indicator species to assess environmental soundness of agricultural practice and biodiversity in rice paddies. The density of several species of natural enemies did respond both to pesticide use and to general arthropod biodiversity. The analyses thus have indicated that natural enemies can be suitable as bio-indicators. Usefulness of indicator species in rice paddies is discussed in the context of ecologically sound agriculture.