• 제목/요약/키워드: natural herbicides

검색결과 42건 처리시간 0.029초

불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術) (Herbicidal Phytotoxicity under Adverse Environments and Countermeasures)

  • 권용웅;황형식;강병화
    • 한국잡초학회지
    • /
    • 제13권4호
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF

습지에서 발생하는 생태계교란야생식물인 물참새피와 털물참새피의 발생특성과 관리방안 (Occurrence characteristics and management plans of Paspalum distichum and P. distichum var. indutum)

  • 이인용;김승환;이용호;;김동건;홍선희
    • 환경생물
    • /
    • 제40권3호
    • /
    • pp.325-334
    • /
    • 2022
  • 물참새피와 털물참새피는 주로 물가, 수로 등 습기가 많은 환경을 선호하는 벼과 다년생잡초이다. 두 종 모두 원산지는 북아메리카 지역으로 물참새피는 전 세계적으로 분포하고 있지만, 털물참새피는 미국, 일본, 한국에만 발생한다. 이런 연유로 많은 나라에서는 물참새피와 털물참새피는 같은 종으로 분류하는 경향이다. 두 종은 종자보다는 주로 지하경의 단편(조각)에 의해 번식하고 확산한다. 이 지하경은 3 cm 이상의 땅속에 매몰되면 출아하지 않는 특성이 있다. 농경지에서 물참새피와 털물참새피의 관리방안으로는 경종적 방제와 화학적 방제를 병행하는 것이 효과적이다. 즉 심경(deep plowing)이나 써레질을 조합한 경종적 방법으로 논이나 휴경답에 침입한 두 종의 출아를 억제시킬 수 있다. 그 후 출아하는 두 종에 토양처리제인 butachlor, thiobencarb 등이나 경엽처리제인 cyhalofopbutyl, fenoxaprop-p-ethyl 등을 살포하면 방제될 수 있다.

Fitness cost and competitive ability of transgenic herbicide-tolerant rice expressing a protoporphyrinogen oxidase gene

  • Chun, Young Jin;Kim, Dae In;Park, Kee Woong;Jeong, Soon-Chun;Park, Sangkyu;Back, Kyoungwhan;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • 제36권1호
    • /
    • pp.39-47
    • /
    • 2013
  • The expression of transgenic traits in genetically modified crops is sometimes associated with decreases in crop performance or fitness. These decreases in performance or fitness of transgenic plants in unfavourable conditions may provide valuable information about the ecological consequences of transgene escape. In a glasshouse trial, we tested the cost associated with resistance to herbicides by comparing the growth, yield, and competitive ability of transgenic rice with its parental non-transgenic line. This new line was developed for constitutive overexpression of protoporphyrinogen oxidase (PPO) to increase resistance to herbicides. We evaluated nine agronomic traits of transgenic and non-transgenic rice grown in a replacement series design over four densities. Competitive ability was also assessed between transgenic and non-transgenic plants by analyzing their relative yields based on biomass and seed weight data. Our results indicated that non-transgenic plants showed greater performance than did the transgenic plants when those genotypes were grown in mixtures. The non-transgenic rice plants exhibited superior competitive ability at certain combinations of planting densities and genotype proportions. These results suggest that PPO-herbicide resistance incurs some costs in plant performance and competitive ability.

큰밤고치벌(Microplites mediator)에 대한 저독성 약제 선발 (Selection of Low Toxic Pesticides to Microplites mediator)

  • 최병렬;권민;이시우;박형만
    • 농약과학회지
    • /
    • 제12권2호
    • /
    • pp.177-183
    • /
    • 2008
  • 고랭지배추 재배지에 발생하는 나방류 해충의 종합적 관리를 위해 생물적방제와 화학적방제의 조화로운 사용에 의한, 배추 재배 시 사용되는 약제 중, 배추좀나방의 천적인 큰밤고치벌(Microplites mediator)에 대해 저독성을 보이는 약제를 선발하였다. 큰밤고치벌에 대한 저독성 약제 선발 방법으로 분무법(Spraying method), 잎침지처리법(Leaf dipping method) 및 충체침지처리법(Body dipping method)을 확립하였다. 배추에 등록되어 있는 주요 살충제 31종을 추천농도로 희석한 후 큰밤고치벌 성충을 충체침지처리한 결과 16종이 저독성 약제로 선발되었으며, 배추에 등록된 살균제 및 제초제 15종은 큰밤고치벌(Microplites mediator) 성충에 모두 독성이 낮았다.

Current status and agronomic aspects of herbicide resistance in Korea

  • Bo, Aung Bo;Jeong, In Ho;Won, Ok Jae;Jia, WeiQiang;Yun, Hye Jin;Khaitov, Botir;Le, Thi Hien;Umurzokov, Mirjalol;Ruziev, Farrukh;Lim, Min Ju;Cho, Kwang Min;Park, Kee Woong;Lee, Jeung Joo
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.405-416
    • /
    • 2019
  • Weeds are a serious problem in crop production. Use of synthetic herbicides is rapidly increasing in weed management worldwide including Korea. Herbicide application reduces the time spent on weed control. However, the evolution of resistance to herbicides in weeds has become widespread as a natural response to selection pressure imposed by agricultural management activities. If an herbicide with the same mechanisms of action is used repeatedly and intensively, it can rapidly select for a weed biotype that shifts toward difficult-to-control becoming a more tolerant weed and lead to the evolution of herbicideresistant weeds. Moreover, agricultural and biological factors have an important role in the development of herbicide-resistant weed populations. Mitigating the evolution of herbicide resistance in weeds relies on reducing selection through the diversification of weed control techniques. The resistance management of weeds in the future will strongly depend on intensive cropping systems. The current situation of intensive cropping systems with their heavy reliance on the efficacy of chemical weed control will not lead to significant containment of this problem. Therefore, management strategies need to overcome the further spread of herbicide resistance in weeds in Korean crop production. This review presents the current information on herbicide resistance in Korea and factors controlling the development of herbicide resistant weeds.

The Catalytic Role of the W573 in the Mobile Loop of Recombinant Acetohydroxyacid Synthase from Tobacco

  • Karim, Masud;Shim, Mi-Young;Kim, Jeong-Mok;Choe, Gyeong-Jae;Kim, Jung-Rim;Choi, Jung-Do;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.549-555
    • /
    • 2006
  • Acetohydroxyacid synthase (AHAS, EC 2.2.1.6 also referred to as acetolactate synthase) catalyzes the first common step in the metabolic pathway leading to biosynthesis of the branched-chain amino acids in plants and microorganisms. Due to its presence in plants, AHAS is a target for the herbicides (sulfonylurea and imidazolinone), which act as potent inhibitors of the enzyme. Recently, we have shown [J. Kim, D.G. Baek, Y.T. Kim, J.D. Choi, M.Y. Yoon, Biochem. J. (2004) 384, 59-68] that the residues in the “mobile loop” 567-582 on the C-termini are involved in the binding/stabilization of the active dimer and ThDP (thiamin diphosphate) binding. In this study, we have demonstrated the role of the W573 in the mobile loop of the C-termini of tobacco AHAS. The substitution of this W573 residue caused significant perturbations in the activation process and in the binding site of ThDP. Position W573 plays a structurally important role in the binding of FAD, maintaining the enzyme active site in the required geometry for catalysis to occur. In here we propose that the tryptophan at position 573 is important for the catalytic process.

Ficus bengalensis L.의 알레로파시 효과 (Allelopathic Effects of Extracts from Ficus Bengalensis L.)

  • ;;;길봉섭
    • The Korean Journal of Ecology
    • /
    • 제21권2호
    • /
    • pp.133-137
    • /
    • 1998
  • Well grown trees of ficus bengalensis produce one or more potential inhibitors of seed germination and seedling growth. The aqueous extract of ficus leaf and bark enhanced the shoot length aqueous leaf extract of F. bengalensis. Bark extract of F. bengalensis inhibited the shoot length and root length of the plant at high concentration. Both the bark and leaf extract inhibited the seed germination. The postemergence and preemergence treatment of bark and leaf extract of F. bengalensis reduced the shoot biomass. The result suggest that F. bengalensis may have potential allelochemicals which may be developed as natural herbicides.

  • PDF

친환경 잡초방제를 위한 생물제초제의 상용화 현황 (Status and Perspective of Bioherbicde Development for Organic Weed Management)

  • 변종영;이증주;박기웅
    • Weed & Turfgrass Science
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 2017
  • 생물제초제의 이용은 농업에서 지속성을 향한 중요한 단계로 활용 될 수 있을 것이다. 유기농업 및 종합잡초관리는 보존농업에서 합성제초제와는 다르게 한 종류의 잡초관리기술에 의존하지 않아야 하며, 생물제초제는 다른 잡초관리기술과 동시에 평가되는 것이 바람직할 것이다. 우리나라 실정에 적합한 세균 및 진균으로부터 유래한 상업용 생물제초제를 선발하여 유기농업 농가에서 영농부가가치가 높은 고소득 작물을 대상으로 생물제초제 실용화 가능성을 검토할 가치가 있을 것이다. 또한 유기영농 과수원에서 비선택적으로 잡초를 방제하기 위하여 상업용으로 시판되는 옥수수 글루텐 가루 제제와 각종 식물정유 제제 등 제품에 대한 실용화 연구가 필요할 것이다.

배추나비고치벌 (Cotesia glomerata)에 대한 저독성 약제 및 잔류독성 (Selection of Low Toxic Pesticides and Residual Toxicity to Cotesia glomerata)

  • 최병렬;이시우;박형만
    • 한국응용곤충학회지
    • /
    • 제46권2호
    • /
    • pp.251-259
    • /
    • 2007
  • 고랭지배추 재배지에 발생하는 나방류 해충의 방제에 생물적방제와 화학적방제의 조화로운 이용을 위하여, 배추 재배 시 사용되는 약제 중 배추좀나방의 천적인 배추나비고치별 (Cotesia glomerata) 에 대해 저독성을 보이는 약제를 선발하고 잔류독성을 평가하였다. 배추나비고치벌에 대한 저독성 약제선발 방법으로 먹이처리법 (Diet treatment method), 잎침지처리법 (Leaf dipping method) 및 충제침지처리법(Body dipping method) 을 확립하였다. 배추에 등록되어 있는 주요 살충제 31 종을 추천농도로 희석한 후 배추나비고치별 성충을 충체침지처리한 결과 22종이 저독성 약제로 선발되었으며, 배추에 등록된 살균제 및 제초제 15 종은 배추나비고치별 성충에 모두 독성이 낮았다. 배추에 13 종의 살충제를 처리하여 일수별로 배추나비고치벌 성충에 대한 잔류독성을 평가한 결과, 약제처리 l일후에 방사해도 안전한 약제는 thiacloprid, acephate, chlorfenapyr, clothianidin의 4 종이었으며, 3 일후에 방사가 가능한 약제는 imidacloprid, deltamethrin, thiamethoxam, dimethylvinphos, emamectin benzoate이었다.

A Phi Class Glutathione S-transferase from Oryza sativa (OsGSTF5): Molecular Cloning, Expression and Biochemical Characteristics

  • Cho, Hyun-Young;Lee, Hae-Joo;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.511-516
    • /
    • 2007
  • A glutathione S-transferase (GST) related to the phi (F) class of enzymes only found in plants has been cloned from the Oryza sativa. The GST cDNA was cloned by PCR using oligonucleotide primers based on the OsGSTF5 (GenBank Accession No. $\underline{AF309382}$) sequences. The cDNA was composed of a 669-bp open reading frame encoding for 223 amino acids. The deduced peptide of this gene shared on overall identity of 75% with other known phi class GST sequences. On the other hands, the OsGSTF5 sequence showed only 34% identity with the sequence of the OsGSTF3 cloned by our previous study (Cho et al., 2005). This gene was expressed in Escherichia coli with the pET vector system and the gene product was purified to homogeneity by GSH-Sepharose affinity column chromatography. The expressed OsGSTF5 formed a homo-dimer composed of 28 kDa subunit and its pI value was approximately 7.8. The expressed OsGSTF5 displayed glutathione conjugation activity toward 1-chloro-2,4-dinitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy)propane and glutathione peroxidase activity toward cumene hydroperoxide. The OsGSTF5 also had high activities towards the herbicides alachlor, atrazine and metolachlor. The OsGSTF5 was highly sensitive to inhibition by S-hexylGSH, benastatin A and hematin. We propose from these results that the expressed OsGSTF5 is a phi class GST and appears to play a role in the conjugation of herbicide and GPOX activity.