• Title/Summary/Keyword: natural gas(CNG)

Search Result 162, Processing Time 0.025 seconds

Suggestion for Safety Improvement of Compressed Natural Gas Vehicle (압축천연가스 자동차의 안전성 향상을 위한 제언)

  • Kim, Young-Seob;Park, Kyo-Shik;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • Systematic safety research by Korea Government has been made to enhance the safety of CNG (compressed natural gas) vehicles since the burst of compressed cylinder of an urban bus in August 9, 2010. This article summarizes some major activities to ensure the safety of CNG vehicles, which covers review of regulation, safety management system including standard of inspection and certification, and training program of inspectors and car mechanics. Specifically, the followings were reviewed; type of CNG cylinder, location of CNG cylinder, material and type of fuel line and vent line, modification of pipeline connection, installation of gas detector, installation of emergency shutdown valve, installation of protecting cover for cylinder, obligations for CNG vehicle filling station. improving periodical inspection, routine test on gas vehicles, training program for engaged in gas vehicles, and designation of safety manager for CNG bus company. This paper suggests how to improve safety of CNG vehicles as a result of review of above mentioned check items.

Compressed Natural Gas Bus & Liquefied Petroleum Gas Vehicle (압축천연가스(CNG)버스와 액화석유가스(LPG)자동차)

  • 윤재건
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.3
    • /
    • pp.28-32
    • /
    • 2001
  • Using the CNG(compressed natural gas) and LPG(liquified petroleum gas) as the automotive fuel will be expanded because of their clean effect to the environmental air qualify. But these programs of gas using expansion would have a difficulty due to public consideration of gas utilities as a big hazard. The Ministry of Environment has an ambitious plan to substitute more than 25,000 buses with CNG and ensure more than 200 CNG refueling stations as well by the year of 2007. However, it is very difficult to establish new CNG and LPG refueling stations because of expanded safety distance than ever before by several major explosion accidents.

  • PDF

Characteristics of Combustion and Emission for Synthetic Natural Gas in CNG Engine (CNG엔진에서 합성가스 연료의 연소 및 배기 특성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.8-14
    • /
    • 2015
  • Synthetic natural gas(SNG), acquired from coal, is regarded as an alternative to natural gas since a rise in natural gas due to high oil price can be coped with it. In the present study, 11-liter heavy duty compressed natural gas(CNG) engine was employed in order to examine the combustion and emission characteristics of SNG. The simulated SNG, made up 90.95% of methane, 6.05% propane and 3% hydrogen was used in the experiment. Power output, thermal efficiency, combustion stability and emission characteristics were compared to those with CNG at the same engine operating conditions. Knocking phenomenon was also analyzed at 1260 rpm, full load condition. Combustion with SNG was more stable than CNG. Nitrogen oxides emissions increased while Carbon dioxides emissions decreased. Anti-knocking characteristics were improved with SNG.

A Development of Converting Technology for the Marine Gasoline/CNG Bi-fuel Engine (선박용 가솔린/CNG Bi-fuel 엔진개조 기술 개발)

  • Park, Myung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.632-637
    • /
    • 2010
  • Natural gas, a fossil fuel contained mostly of methane, is one of the cleanest alternative fuels. It can be used in the form of compressed gas(CNG) or liquefied natural gas(LNG) to cars and trucks. And, dedicated natural gas vehicles are designed to run on natural gas only, while Bi-fuel vehicles can also run on gasoline or CNG, especially, bi-fuel can be defined as the simultaneous combustion of two fuels. In this study, converted gasoline marine system to CNG Bi-fuel system which is made up of injector, regulator, tank and ECU is converted. And estimated the fuel system and engine power compared the result with gasoline engine is estimated. As a result, CNG engine shows low exhaust emissions but maxium power is 7% reduced compared to gasoline engine.

Carbonaceous Media for Vehicular Natural Gas Storage (자동차용 천연가스 저장을 위한 탄소매질)

  • Moon, Hee
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Compressed natural gas (CNG) has been used as a vehicular fuel compressed at 24.8 MPa because the energy density of natural gas is extremely low compared with gasoline. Thus it has problems in both safety and cost for multiple stage compression. For these reasons the use of adsorbed natural gas (ANG) has been pursued since the storage of natural gas is possible at a relatively low pressure. The present target is to obtain media to store natural gas at 3.5 MPa as ANG that ensures the comparable energy density of CNG, giving approximately one-fourth the driving range of an equivalent volume gasoline tank. In this review, the recent development of carbon media, their characteristics, and practical applications for natural gas storage are introduced and some recommendations are also suggested.

A Study on Natural Gas Vehicle Conversion by Diesel Engine Improvement (디젤엔진개량에 의한 천연가스차량전환에 관한 연구)

  • Han, Yeong Chul;O, Yong Seok;Na, Wan Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.94-94
    • /
    • 1999
  • Natural gas is considered to be on e of the most promising candidates for a clean substitute fuel and a great amount of research on the compressed natural gas(CNG) fueled vehicle has been performed. In this s tudy, we try to understand the property of CNG fuel with using CNG engine experiment. In order to present the direction and application of CNG, we experiment with various operating conditions that is, spark timing, A/F ratio, air quantity and fuel quantity, etc. 11,967 cc engine was used in the experiment and the engine fuel ratio was determined in the way that the performance of dedicated CNG engine is corresponded to that of existing diesel engine. The performance and dedicated CNG engine were measured by changing the fuel injection timing. The dedicated CNG engine was proved to be good in describing the experimental results and according to the actual road test, acceleration and constant speed driving for dedicated CNG engine was better than existing diesel engine.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load (부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향)

  • Kim, Hyung-Min;Lee, Ki-Hyung;Kim, Bong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

Consequence Analysis of Hydrogen Blended Natural Gas(HCNG) using 3D CFD Simulation (CFD를 활용한 수소-천연가스 혼합연료에 대한 피해영향 분석)

  • Kang, Seung-Kyu;Bang, Hyo-Jung;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 2013
  • This study evaluated comparison of the risk according to the type of fuel by three-dimensional simulation tool(FLACS). The consequence analysis of fire explosion and jet-fire was carried out in the layout of a typical high-pressure gas filling stations using CNG, hydrogen and 30%HCNG. Under the same conditions, hydrogen had a 30kPa maximum overpressure, CNG had a 0.4kPa and HCNG had a 3.5kPa. HCNG overpressure was 7.75 times higher than the CNG measurement, but HCNG overpressure was only 11.7% compared to hydrogen. In case of flame propagation, hydrogen had a very fast propagation characteristics. On the other hand, CNG and HCNG flame propagation velocity and distance tended to be relatively safe in comparison to hydrogen. The estimated flame boundary distance by jet-fire of hydrogen was a 5.5m, CNG was a 3.4m and HCNG was a 3.9m.