• Title/Summary/Keyword: natural frequency analysis

Search Result 2,457, Processing Time 0.035 seconds

A Study on the Stability of Intake gate in a Dam (취수문비의 안정성에 관한 연구)

  • Kwack, Young-Kyun;Ko, Sung-Ho;Kang, Min-Koo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • A stability analysis has been made for a newly designed gate of intake tower of reservoir. The analysis is composed of finding the natural frequency of the gate and the frequency induced by water flowing over and through the gate. ANSYS is employed to calculate the natural frequency of the gate and SC/Tetra is utilized for calculating flow field around the gate, which in turn gives the frequency of pressure force fluctuation on the gate. In addition to the safety analysis, the present study presents how the gate selectively intakes a muddy water layer located in the middle depth of reservoir.

Noise and Vibration Characteristics by Heavy-weight Floor Impact (중량바닥충격에 의한 소음 및 진동 특성)

  • 서상호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Vibration Analysis in Reinforced Concrete Slab Using Tables of Orthogonal Arrays (직교배열표을 활용한 슬래브 구조체의 진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.372-378
    • /
    • 2005
  • Finite element analysis of concrete slab system in apartment building was executed using the tables of orthogonal arrays, and optimal design process was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Finite element model of concrete slab was compared with experimental results, and well corresponded with an error of less than 10%. The tables of orthogonal arrays were used for finite element analysis with 8 factors. 3 related to material properties and 5 related to slab shape parameters and its results were analyzed by statistical method, ANOVA. The most effective factor among them was slab thickness, and main effect factor from slab shape parameters was different from each natural frequency. The interaction was found in the higher mode over $3^{rd}$ natural frequency. From main effect plot and interaction plot, the optimal design factor to increase the natural frequency was determined.

  • PDF

Influence of Attached Mass/Masses on Natural Frequency of Vibration of Laminated Composite Plate for Bridge Deck (교량상판형(橋梁上板形) 적층복합판(積層復合板)의 진동수(振動數)에 대한 첨가질량(添加質量)의 영향(影響))

  • Sim, Do-Sik;Lee, Se-Jin;Kim, Kyung-Jin;Park, Je-Sun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.123-129
    • /
    • 1996
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. In order to obtain the natural frequency by the presented method, the first step to take is to obtain the deflection influence surfaces. In design and analysis of any structure, the first step to be taken is to obtain this deflection influence surfaces. Any method can be used for this purpose. Then using this surfaces, deflections, slopes, moments, shears, and natural frequencies can be obtained by differentiating either the continuous function or discrete function defined at certain points. The merit of the presented method is that the natural frequency can be obtained by the deflection influence surfaces obtaining which is the first step in structural analysis.

  • PDF

A Study on Dynamic Stiffness of Inspection Robot Frame Considering Sub-span Oscillation (서브스판 진동을 고려한 송전선로 검사로봇 프레임 구조 설계에 관한 연구)

  • Kim, Moon Young;Lee, Jun Young;Lee, Taikjin;Yim, Hong Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.827-829
    • /
    • 2014
  • This paper presents a design methodology for improving dynamic stiffness of an inspection robot frame to prevent resonance. Finite element models of robot frame are developed for natural frequency analysis. Natural frequency analysis of robot frame is conducted to compare with sub-span oscillation which is excitation frequency. Reinforcement beams are applied to the sensitive parts of the robot frame to improve dynamic stiffness using case study. To reduce mass of the robot frame, thickness optimization of the robot frame is carried out by utilizing response surface method. The result of optimization show that dynamic stiffness of robot frame is increased. As a result, natural frequency of an optimal model is not included in range of frequencies of the sub-span oscillation.

  • PDF

Structural analysis based on multiresolution blind system identification algorithm

  • Too, Gee-Pinn James;Wang, Chih-Chung Kenny;Chao, Rumin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.819-828
    • /
    • 2004
  • A new process for estimating the natural frequency and the corresponding damping ratio in large structures is discussed. In a practical situation, it is very difficult to analyze large structures precisely because they are too complex to model using the finite element method and too heavy to excite using the exciting force method; in particular, the measured signals are seriously influenced by ambient noise. In order to identify the structural impulse response associated with the information of natural frequency and the corresponding damping ratio in large structures, the analysis process, a so-called "multiresolution blind system identification algorithm" which combines Mallat algorithm and the bicepstrum method. High time-frequency concentration is attained and the phase information is kept. The experimental result has demonstrated that the new analysis process exploiting the natural frequency and the corresponding damping ratio of structural response are useful tools in structural analysis application.

Natural Frequency Analysis of Spring-Manipulator System for Force Generation Utilizing Mechanical Resonance

  • Kobayashi, Jun;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1651-1656
    • /
    • 2005
  • This paper describes a natural frequency analysis conducted to find out a suitable working area for a spring-manipulator system generating a large vibrating force with mechanical resonance. Large force generation is one of the functions that we hope for a robot. For example, a weeding robot is required to generate a large force, because some weeds have roots spreading deeply and tightly. The spring-manipulator system has a spring element as an end-effector, so it can be in a state of resonance with the elasticity of the spring element and the inertial characteristics of the manipulator. A force generation method utilizing the mechanical resonance has potential to produce a large force that cannot be realized by a static method. A method for calculating a natural frequency of a spring-manipulator system with the generalized inertia tensor is proposed. Then the suitable working area for the spring-manipulator system is identified based on a natural frequency analysis. If a spring-manipulator system operates in the suitable working area, it can sustain mechanical resonance and generate a large vibrating force. Moreover, it is shown that adding a mass at the tip of the manipulator expands the suitable working area.

  • PDF

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion (병진 가속도 운동을 하는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.349-354
    • /
    • 2001
  • A structure which is accelerated in the chordwise direction induces variation of the bending stiffness due to inertia force. Thus, the characteristic of natural vibration is also changed. This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. The dependence of natural frequencies and modes on the acceleration changes of the plate is investigated. Particularly, a natural frequency loci veering is observed and discussed in the present study.

  • PDF