• Title/Summary/Keyword: natural flow

Search Result 2,459, Processing Time 0.029 seconds

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream (하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Park, Ro-Sam;Kwak, Tae-Hwa
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Support Locations (시뮬레이션에 의한 유체 유동 굴곡파이프의 지지점 변화에 따른 고유 진동수 고찰)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.115-123
    • /
    • 1998
  • A simulation is performed to investigate the effect of the pipe supports on the change of the natural frequencies of curved pipe systems containing fluid flow, for different elbow angles and geometry of the pipe systems. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the corresponding eigenvalue problem. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies. Without any support, the change of the fundamental natural frequency due to the geometric change is smaller than the change of the second or higher natural frequencies. The more curve parts exist in the pipe system, the less change of lower frequency range, compared with the change of higher frequency range, is observed. Spring supports can be used to reduce the fundamental natural frequency, without change of the second or higher natural frequencies. To avoid resonance, which is critically dangerous from the view point of structural dynamics, the mechanical properties such as stiffness or the location of pipe supports are need to be changed to isolate the natural frequencies from the frequency range of dominant vibration modes.

  • PDF

Estimation of Natural Streamflow for the Bokhacheon Middle-upper Watershed (복하천 중상류 유역의 자연유량 산정)

  • Kim, Nam Won;Lee, Jeongwoo;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1169-1180
    • /
    • 2013
  • The objectives of this study are to construct the natural streamflow in the Bokhacheon middle-upper watershed using the SWAT-K model and to assess the impacts of groundwater withdrawals, water intake, treated sewage water release on streamflow. The simulated natural streamflow from 2006 to 2013 showed the minimum discharge of $1.7m^3/s$, the annual average discharge of $26.2m^3/s$, the drought flow of $2.0m^3/s$ at the outlet of the study area. The simulated results indicated that the groundwater pumping has induced the decrease of 34% in drought flow against the natural condition and the net water release has caused the increase of 15%, while the combined effects of the groundwater pumping and the net water release have induced the decrease of 19%. It was found out from the simulated natural streamflow data that the specific discharges of the abundant flow, normal flow, low flow, drought flow in the upper-middle channels of the Bokha-cheon watershed have a tendency to increase as the drainage area increases, but the specific discharges showed almost constant values at any downstream point with drainage area more than about 180 $km^2$.

The Effects of Panax ginseng and P. quinquefolium on Hemodynamics and Body Temperature in Healthy Young Men (II)

  • Lee, Jee-Hwan;Cho, Jung-Ah;Ki, Chan-Young;Son, Yeon-Kyoung;Park, Jeong-Hill;Park, Man-Ki;Han, Yong-Nam
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.318-318
    • /
    • 2003
  • The current study was performed to observe the effects of Panax ginseng (PG) and P. quinquefolium (PQ) on hemodynamics such as blood flow rate (BF), blood flow velocity (BV), heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) and body temperature (BT) in healthy young men. This is a randomized, single-blind study observed during 6 hrs after orally single administration of PG and PQ groups. (omitted)

  • PDF

Experimental study on natural circulation using liquid nitrogen for superconducting applications

  • Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.49-52
    • /
    • 2013
  • An experiment to investigate the natural circulation of a cryogen has been performed. The study is motivated mainly by our recent development of cryogenic cooling system for prototype superconducting cyclotron without any circulating pump. In the natural circulation loop system, a cooling channel is attached on the outer surface of the aluminium block and the liquid nitrogen passes through inside of the channel to cool the block indirectly. A cryocooler as a heat sink is located at the top to re-condense cryogenic vapor coming from the aluminium block in which electrical heater is installed as a heat source. The main dimensions are determined using the relevant analysis and the natural circulation loop is successfully fabricated. The temperature distributions in the loop are measured during initial cool-down process and in steady state, from which the modified Grashof numbers are calculated and compared with the existing correlation estimated with one-dimensional analysis for steady state flow.

A study on the Water Retention of Coating Colors(V)-Application of Alkali Sensitive Water Retention and Rheology Modifiers- (도공액의 보수성에 관한 연구(제5보)-알칼리 반응형 보수.유동성 개량제의 적용-)

  • 이용규;엄기용
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.28-35
    • /
    • 1997
  • Sole-binder formulation has been recently introduced to solve the problems of coating process and printability caused by use of natural polymer However, the decrease of natural polymer application causes another problem in paper coating. Therefore, synthetic thickener is used to get similar effect to natural polymer usage. In this study. low shear viscosity, dewatering of coating colors were measured to evaluate the performance of the alkali sensitive water retention and rheology modifiers. The effects of alkali sensitive thickener on the physical properties of coated paper and printability were also investigated. The gloss and printability of coated paper containing the synthetic flow modifier were similar or superior to those of CMC containing coated paper. This modifier was also effective to improve the problems caused by the use of starch. The results indicated that the flow modifier synthesized with alkali sensitive thickener can reduce the problems of natural polymer and could be a good substitute f3r a natural polymer.

  • PDF

Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: I. Theory and Development of the Model

  • Park, Sang-Woo;Lee, Sin-Jae;Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1203-1210
    • /
    • 2008
  • Flow resistance in a natural stream is caused by complex factors, such as the grains on the bed, vegetation, and bed-form, reach profile. Flow resistance in a generally stable gravel bed stream is due to protrudent grains from bed. Therefore, the flow resistance can be calculated by equivalent roughness in gravel bed stream, but estimation of equivalent roughness is difficult because nonuniform size and irregular arrangement of distributed grain on natural stream bed. In previous study, equivalent roughness is empirically estimated using characteristic grain size. However, application of empirical equation have uncertainty in stream that stream bed characteristic differs. In this study, we developed a model using an analytical method considering grain diameter distribution characteristics of grains on the bed and also taking into account flow resistance acting on each grain. Also, the model consider the protrusion height of grain.

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.