• 제목/요약/키워드: natural ecosystems

Search Result 367, Processing Time 0.023 seconds

Tropical red alga Compsopogon caeruleus: an indicator of thermally polluted waters of Europe in the context of temperature and oxygen requirements

  • Andrzej S., Rybak;Andrzej M., Woyda-Ploszczyca
    • ALGAE
    • /
    • v.37 no.4
    • /
    • pp.301-316
    • /
    • 2022
  • The red alga Compsopogon caeruleus can generally be found in tropical and subtropical waters worldwide. In addition to its natural habitats, this species may be found in waters that receive abnormally hot water, e.g., from powerhouses. To date, the presence of C. caeruleus has not been observed in thermally polluted lacustrine ecosystems in Poland, which has a moderate climate. The thalli of this red alga were found growing on Vallisneria spiralis in Lichenskie Lake. Importantly, this paper presents a previously unknown relationship between the temperature (20, 25, 30, 35, and 40℃) and oxygen requirements of C. caeruleus (based on ex situ measurements of O2 consumption by thalli). Surprisingly, 35℃ can be the optimum temperature for C. caeruleus, and this temperature is higher than the values reported by some previous thermal analyses by approximately 10℃. Additionally, we reviewed and mapped the distribution of this nonnative and mesophilic red alga in natural / seminatural water ecosystems in Europe. Finally, we propose that the occurrence of C. caeruleus mature thalli can be a novel, simple and easy-to-recognize bioindicator of artificially and permanently heated waters in moderate climate zones by a regular discharge of postindustrial water.

Lichen as Bioindicators: Assessing their Response to Heavy Metal Pollution in Their Native Ecosystem

  • Jiho Yang;Soon-Ok Oh;Jae-Seoun Hur
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.343-353
    • /
    • 2023
  • Lichens play crucial roles in the ecosystems, contributing to soil formation and nutrient cycling, and being used in biomonitoring efforts to assess the sustainability of ecosystems including air quality. Previous studies on heavy metal accumulation in lichens have mostly relied on manipulated environments, such as transplanted lichens, leaving us with a dearth of research on how lichens physiologically respond to heavy metal exposure in their natural habitats. To fill this knowledge gap, we investigated lichens from two of South Korea's geographically distant regions, Gangwon Province and Jeju Island, and examined whether difference in ambient heavy metal concentrations could be detected through physiological variables, including chlorophyll damage, lipid oxidation, and protein content. The physiological variables of lichens in response to heavy metals differed according to the collection area: Arsenic exerted a significant impact on chlorophyll degradation and protein content. The degree of fatty acid oxidation in lichens was associated with increased Cu concentrations. Our research highlights the value of lichens as a bioindicator, as we found that even small variations in ambient heavy metal concentrations can be detected in natural lichens. Furthermore, our study sheds light on which physiology variables that can be used as indicators of specific heavy metals, underscoring the potential of lichens for future ecology studies.

Acacia Dominated Area Exclosures Enhance the Carbon Sequestration Potential of Degraded Dryland Forest Ecosystems

  • Halefom, Zenebu;Kebede, Fassil;Fitwi, Ibrahim;Abraha, Zenebe;Gebresamuel, Girmay;Birhane, Emiru
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Area exclosure is a widely practiced intervention of restoring degraded lands though its impact in sequestering terrestrial and soil carbon is scanty. The study was initiated to investigate the effect of exclosure of different ages on carbon sequestration potential of restoring degraded dryland ecosystems in eastern Tigray, northern Ethiopia. Twelve plots each divided into three layers were randomly selected from 5, 10 and 15 years old exclosures and paired adjacent open grazing land. Tree and shrub biomasses were determined using destructive sampling while herb layer biomass was determined using total harvest. The average total biomass obtained were 13.6, 24.8, 27.1, and 55.5 Mg ha-1 for open grazing, 5 years, 10 years, and 15 years exclosures respectively. The carbon content of plant species ranged between 48 to 53 percent of a dry biomass. The total carbon stored in the 5 years, 10 years and 15 years age exclosures were 39 Mg C ha-1, 46.3 Mg C ha-1, and 64.6 Mg C ha-1 respectively while in the open grazing land the value was 24.7 Mg C ha-1. Carbon stock is age dependent and increases with age. The difference in total carbon content between exclosures and open grazing land varied between 14.3-40 Mg C ha-1. Although it is difficult to extrapolate this result for a longer future, the average annual carbon being sequestered in the oldest exclosure was about 2.7 Mg C ha-1 yr-1. In view of improving degraded area and sequestering carbon, area exclosures are promising options.

Low Carbon.Green Growth Paradigm for Fisheries Sector (수산부문 저탄소.녹색성장 패러다임)

  • Park, Seong-Kwae;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.97-110
    • /
    • 2009
  • Two of the most important topics of the 21st century are ensuring harmony between man and his environment and the emerging long-tail economy in which niche markets are becoming increasingly more important. Since the Industrial Revolution in 17th century, human beings have increasingly exploited the world's natural capital, such as the natural environment and its ecosystems. Now the world is facing limits to sustainable economic growth because of limits to this natural capital. Thus, most countries are beginning to adopt a new development paradigm, the so-called"Green Development Paradigm" which pursues environmental conservation in parallel with economic growth. Recently, the Korean government announced an ambitious national policy of Low Carbon & Green Growth for the next six decades. This is an important step that transforms the existing national policy into a new future-oriented one. The fisheries sector in particular has great potential for making a substantial contribution to this national policy initiative. For example, the ocean itself with its sea plants and phytoplankton has an enormous capacity for fixing carbon, and its vast areas of tidal flats have a tremendous potential for cleaning up pollutants from both the sea and the land. Furthermore, the fishing industry has great potential for the development of fuel-saving biodegradable technologies, and a long-tail economy based on digital technologies can do much to promote the production and consumption of green goods and services derived from the oceans and the fisheries. In order for this potential to be realized, the fisheries authority needs to develop a new green-growth strategy that is practical and widely supported by fishing communities and the markets, taking into account the need for greenhouse gas reduction, conservation of the ocean environment and ecosystems, an improved system for seafood safety, the establishment of strengthened MCS (monitoring control surveillance) system, and the development of coastal ecotourism. In addition, fisheries green policies need to be implemented through a well-organized system of government aids, regulations and compensation, and spontaneous (voluntary) orders in fishing communities should be promoted to encourage far more responsible fisheries.

Ecological Planning Technique for Considering Biotope Evaluation of Housing Development Districts (택지개발지구에서의 비오톱 평가에 기초한 환경생태계획 기법 연구)

  • Lee, Soo-Dong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.6 s.119
    • /
    • pp.22-38
    • /
    • 2007
  • Since 1990, urban areas have been expanded rapidly due to the concentration of the population and several development projects including large scale apartment complexes and residential developments. Due to these development projects, the quality and functions of ecosystems have been continuously degraded, regardless of public agencies' efforts introducing development index, guideline, and amendment of law for sustaining the quality of ecosystems. Substantial guideline and content cannot expect the sustainable maintenance of nation's natural resources. Recent improve this situation, ecological planning was introduced, but research data of environments and objective systems were not enough showing the limits. The purposes of this study were to reduce the urban sprawl caused by residential development plans for environment-friendly residential developments, to establish applicable ecological planning, and to suggest the land use plans that reduce adverse effects of developments to nature ecosystem.

Island ecology on biological-cultural diversities and human adaptation in seascapes

  • Hong, Sun-Kee
    • Journal of Ecology and Environment
    • /
    • v.33 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • The Asian cultural landscape is a mirrored ecosystem of great complexity, formed by the interaction of man and nature, coupled with a host of ecological processes. The human dependencies on and environmental adaptation of the bio-organisms and the surrounding landscape constitute the typical cultural landscape. Islands are a good example of a cultural landscape, and each mosaic pattern of marine and coastal ecosystems reflects bio-cultural diversity. Along with land-use patterns, wise use of biological organisms and indigenous knowledge has expanded to islands in the Asia-Pacific region in several ways (sea current and human impact, etc.). Loss in biodiversity and landscape diversity as well as cultural diversity owing to global warming and rapid urbanization are emerging issues for island ecosystems all over the world. In order to sustain the historical coexistence between man and natural systems, we ecologists must continue to search for a holistic solution for academic consilience. In this paper, I present the vision and practical characteristics of island ecology with a view toward the conservation of the traditional landscape and bio-cultural diversities in the seascape.

Landscape Scale Ecosystem Assessment Modelling Using Spatial Pattern Analysis of GIS: A Case Study of Yongin, Korea (GIS 공간유형분석 모형을 이용한 경관 규모 생태계의 평가기법)

  • 손학기;김원주;박종화
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 2000
  • The objective of this study were to develop landscape scale ecosystem assessment model, and apply the model for the assessment of the state and change of ecosystem of the study area, Yongin, Korea. Since natural ecosystem of the site has been deteriorated significantly during recent extensive residential development, it is essential to correctly assess ecosystem of the study site. Traditional ecosystem assessment mainly utilizing intensive field survey requires high cost, but the outcome rarely represents spatial pattern of the regional ecosystems. Ecosystem assesment of landscape scale based on landscape ecology can resolve most of the shortfalls of the traditional approach. The research method can be summarized as follows. First, extensive literature review on such topics as spatial pattern of ecosystem, ecosystem assessment of landscape scale, ecological analysis was carried out. Second, a model for the ecosystem assessment of landscape scale emphasizing spatial pattern of ecosystem was developed. This model evaluates three indicators; ecological integrity and biological diversity, watershed integrity, and landscape resilience of 11 watersheds in the study area. Finally, ecological assessment utilizing two sets of indicators, enhancement of and disturbance of ecosystem stability, was carried out. This assessment method is based on Environmental Monitoring and Assessment Program´s Landscape component(EMAP-L) of EPA(1994). The results of this study are as follows. First, the ecosystem assessment of landscape scale of the study area of Yongin, Korea, showed that escosystems of Tanchun01 and Chungmichun01 watersheds had the worst state in the study site in 1991. On the other hand, the ecosystems of Jinwechun01, Kyunganchun02, and Bokhachun01 watersheds had the most stable ecosystem in 1991. Second, ecosystems of Tanchun01, Shingal reservoir, and Kyunganchun01 watersheds were evaluated to be the worst state in the study site in 1996. And, ecosystems of Jinwechun01 and Gosam reservoir watersheds had the most stable ecosystem. Third, ecosystem of Tanchun01 watershed which incudes Suji residential development project site changed the most drastically between 1991 and 1996. The ecosystem of the watershed the most drastically deteriorated due to it´s proximity to Seoul and Bundang new town.

  • PDF

Ecological Assessments of Aquatic Environment using Multi-metric Model in Major Nationwide Stream Watersheds (우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가)

  • An, Kwang-Guk;Lee, Jae-Yon;Bae, Dae-Yeul;Kim, Ja-Hyun;Hwang, Soon-Jin;Won, Doo-Hee;Lee, Jae-Kwan;Kim, Chang-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.796-804
    • /
    • 2006
  • The objective of this research was to develop ecological multi-metric models using natural fish assemblages for a diagnosis of current stream health condition, and apply the model to nationwide lotic ecosystems of the Geum River, the Youngsan River, and the Sumjin River. The ecological stream health model was based on the index of biological integrity (IBI), which was originally developed in North American streams by Karr (1981), and the Rapid Bioassessment Protocol (RBP), which was scientifically established by the US EPA (1999). The metric numbers and metric attributes were partially changed for the regional applications, so the scoring criteria was modified for the assessment. Overall, metric values, based on the IBI calculations, reflected conventional water quality characteristics, based on nutrient regime, and agreed with results of staticeco-toxicity tests. Some stations impaired in terms of stream health were identified by the IBI approach, and also major key stressors affecting the stream health were identified by additional evaluations of physical habitats. Our preliminary results suggested that biological integrity in stream ecosystems was largely disturbed by habitat degradation as well as chemical pollutions. This new approach would be used as a key tool for ecological restorations and species conservations in the degraded aquatic ecosystems in Korea and applied for elucidating major causes of ecological disturbances. Ultimately, this approach provides us an effective management strategy of stream ecosystems through establishments of ecological networks in various watersheds.

The Effects of Reactive Nitrogen (Nr) Compounds on the Acidification in Soil and Water Environment Ecosystems and the Mitigation Strategy (반응성 질소화합물로 인한 토양 및 물 환경 생태계의 산성화 영향 및 대응방안)

  • Cho, Youngil;Kang, Hyesoon;Jeon, Eui-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The increases of industrial and technological development and human activities have disturbed the balance of natural nitrogen (N) circulation. These phenomena have induced that large amounts of N are to be present in excess in air, soil and water environment. We investigated the effects of excess of reactive nitrogen ($N_r$) compounds on soil and water environment ecosystems through literature and case studies, and suggested the strategy of mitigating the acidification in soil and water ecosystems. $N_r$ moves to air, soil and water media, can be converted to different types, and interacts with other chemical compounds. As an efficient N management plan, the evaluation (application of monitoring and safety index) and the chemical restoration (research and development) of the acidification in soil and water environment ecosystems are required to minimize the effects of $N_r$ as well as policies to regulate the various emission sources and amounts of $N_r$.

Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea (기후변화에 따른 산림생태계 영향: 우리나라 연구현황과 과제)

  • Lim Jong-Hwan;Shin Joon-Hwan;Lee Don-Koo;Suh Seung-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Recent global warming seems to be dramatic and has influenced forest ecosystems. Changes in phonology of biota, species distribution range shift and catastrophic climatic disasters due to recent global warming have been observed during the last century. Korean forests located mainly in the temperate zone also have been experienced climatic change impacts including shifting of leafing and flowering phonology, changes in natural disasters and forest productivity, However, little research has been conducted on the impact of climate change on forest ecosystems in Korea which is essential to assess the impact and extent of adaptation. Also there is a shortage in basic long-term data of forest ecosystem processes. Careful data collection and ecological process modeling should be focused on characteristic Korean forest ecosystems which are largely complex terrain that might have hindered research activities. An integrative ecosystem study which covers forest dynamics, biological diversity, water and carbon flux and cycles in a forest ecosystem and spatial and temporal dynamics modeling is introduced. Global warming effects on Korean forest ecosystems are reviewed. Forestry activity and the importance of forest ecosystems as a dynamic carbon reservoir are discussed. Forest management options and challenges for future research, impact assessment, and preparation of mitigating measures in Korea are proposed.