• 제목/요약/키워드: natural convection model

검색결과 192건 처리시간 0.028초

비정상열선법을 이용한 나노유체 열전도도 측정 시 자연대류 개시점에 대한 연구 (Onset of Natural Convection in Transient Hot Wire Device for Measuring Thermal Conductivity of Nanofluids)

  • 이승현;김현진;장석필
    • 대한기계학회논문집B
    • /
    • 제35권3호
    • /
    • pp.279-285
    • /
    • 2011
  • 본 논문에서는 비정상열선법을 이용한 나노유체의 열전도도 측정시, 자연대류 개시점을 수치적 방법을 통하여 파악해 보았다. 측정 유체는 부피비 1, 4, 10% 를 갖는 물-기반 알루미나 나노유체이고, 이에 대한 물성치는 기존 이론모델 및 실험적 상관관계식을 이용하여 계산하였다. 비정상열선법 장치는 FDM 방식으로 모델링 되었으며, 자연대류의 개시점은 중력장하의 열선의 온도변화를 관찰함으로써 파악하였다. 자연대류의 개시점은 물의 경우 11.5 초이고, 10% 부피비에서 Maxwell 모델로 열전도도를 예측한 알루미나 나노유체인 경우 41.6 초로 계산되었다. 특히 부피비가 증가할수록 자연대류가 늦게 발생함을 확인하였으며, 계산된 결과를 이용하여 비정상열선법의 실린더 내부에서 나노유체의 자연대류 개시점을 예측할 수 있는 관계식을 제시하였다. 또한 비정상열선법으로 열전도도를 측정할 때, 기본유체의 자연대류 발생시점 이전에 측정이 이루어진다면 나노유체의 열전도도 측정시 자연대류에 의한 측정오차는 무시할 수 있음을 확인하였다.

대수층 축열시스템의 열거동에 관한 실험적 연구 (An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System)

  • 이세균;문병수;남승백;김기덕
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1780-1787
    • /
    • 1992
  • 본 연구에서는 대수층을 시뮬레이션한 실험장치를 통하여 온도분포를 관찰하 고 자연대류에 관한 단순화된 이론적 모델을 개발하여 실험치와 비교 검토하고자 한 다.

Jang and Choi's Model과 다양한 점성계수 모텔을 이용한 나노유체에서의 자연대류 특성 (Natural Convection of Nanofluids Using Jang and Choi's Model for Effective Thermal Conductivity and Various Models for Effective Viscosity)

  • 황교식;장석필
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.539-545
    • /
    • 2005
  • In this paper, the thermal characteristics of natural convection in a rectangular cavity with nanofluids such as water-based nanofluids containing alumina are theoretically investigated with a new model of the thermal conductivity for nanofluids presented by Jang and Choi and various models for effective viscosity. In addition, based on theoretical results, the effects of various parameters such as the volume fraction, the temperature, and the size of nanoparticles on free convective instability and heat transfer characteristics in a rectangular cavity with nanofluids are suggested.

  • PDF

개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구 (A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure)

  • 박찬국;추병길;김철
    • 한국화재소방학회논문지
    • /
    • 제11권1호
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

쵸크랄스키 단결정 장치에서의 실리콘유동 (Silicon melt motion in a Czochralski crystal puller)

  • 이재희;이원식
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.27-40
    • /
    • 1997
  • The heat in Czochralski method is transfered by all transport mechanisms such as convection, conduction and radiation and convection is caused by the temperature difference in the molden pool, the rotations of crystal or crucible and the difference of surface tension. This study delvelops the simulation model of Czochralski growth by using the finite difference method with fixed grids combined with new latent heat treatment model. The radiative heat transfer occured in the surfce of the system is treated by calculating the view factors among surface elements. The model shows that the flow is turbulent, therefore, turbulent modeling must be used to simulate the transport phenomena in the real system applied to 8" Si single crystal growth process. The effects of a cusp magnetic field imposed on the Czochralski silicon melt are studied by numerical analysis. The cusp magnetic field reduces the natural and forced convection due to the rotation of crystal and crucible very effectively. It is shown that the oxygen concentration distribution on the melt/crystal interface is sensitively controlled by the change of the magnetic field intensity. This provides an interesting way to tune the desired O concentration in the crystal during the crystal growing.

  • PDF

Fixed-Grid Simulation of Convection-Dominated Melting in a Rectangular Cavity

  • Wongee Chun;Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.796-803
    • /
    • 2001
  • Numerical solutions for the convection-dominated melting in a rectangular cavity are presented. The enthalpy-porosity model is employed as the mathematical model. This model is applied in conjunction with the EIT method to detect boundary movement in a phase changing environment. The absorption and evolution of latent heat during the phase change is dealt with by the enthalpy-based energy equation. This seems to be more efficient than resolving the temperature-based energy equation. The velocity switch-off, which is required when solid changes into liquid, is modeled by the porous medium assumption. For efficiency and simplicity of the solutions procedure, this paper proposes a simple algorithm, which iterates the temperature and the liquid fraction of the cells comprising the front layer. The numerical results agree reasonably well with the experimental data and other previous works using the transformed-grid system.

  • PDF

발열 전도체를 가지는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (Numerical Study of Thermal Convection in Horizontal Enclosure with Heat Generating Conducting Body)

  • 이재룡;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1080-1085
    • /
    • 2004
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}$ to $10^{6}$. Multi-domain technique is used to handle square-shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

  • PDF

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

열원이 부착된 수평 평판에서 복합 열전달에 관한 연구 (A Study on the Conjugate Heat Transfer from Horizontal Plate with Protruding Heat Source)

  • 김병철;주동인
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.512-518
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.

타원-혼합 2차모멘트 모형에 의한 강제와 자연대류가 복합된 수직 평판 난류유동의 예측 (Prediction of Combined Forced and Natural Turbulent Convection in a Vertical Plane Channel with an Elliptic-Blending Second Moment Closure)

  • 신종근;안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1265-1276
    • /
    • 2005
  • The elliptic conceptual second moment models for turbulent heat fluxes, which are proposed on the basis of elliptic-blending and elliptic-relaxation equations, are applied to calculate the combined forced and natural turbulent convection in a vertical plane channel. The models satisfy the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also have the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also the models are closely linked to the elliptic blending model which is used for the prediction of Reynolds stress. In order to calibrate the heat flux models, firstly, the distributions of mean temperature and scala flux in fully developed channel flow with constant wall difference temperature are solved by the present models. The buoyancy effect on the turbulent characteristics including the mean velocity and temperature, the Reynolds stress tensor, and the turbulent heat flux vector are examined. In the opposing flow, the turbulent transport is greatly enhanced with both the Reynolds stresses and the turbulent heat fluxes being remarkably increased; whereas, in the aiding flow, the opposite change is observed. The results of prediction are directly compared to the DNS to assess the performance of the model predictions and show that the behaviors of the turbulent heat transfer in the whole flow region are well captured by the present models.