• Title/Summary/Keyword: natural convection

Search Result 841, Processing Time 0.031 seconds

NUMERICAL ANALYSIS FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE HAVING A VERTICAL THERMAL GRADIENT WITH A SQUARE INSULATOR INSIDE

  • Lee, Jae-Ryong;Park, Il-Seouk
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.283-296
    • /
    • 2012
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body in the center is studied. Three different Prandtl numbers (0.01, 0.7 and 7) are considered for the investigation of the effect of the Prandtl number on natural convection. Adiabatic boundary conditions are employed for the side walls. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10_3$ to $10_6$. It had been experimentally reported that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. It was found that when Ra=$10_6$, only the case for intermediate Pr (=0.7) reached a non-changing steady state and the low and high Pr number cases (Pr=0.01 and 7) showed a periodically oscillatory fashion hydrodynamically and thermally. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers are presented to show the overall heat transfer characteristics in the system. Further, the isotherms and streamline distributions are presented in detail to compare the physics related to their thermal behavior.

COMPUTATION OF NATURAL CONVECTION AND THERMAL STRATIFICATION USING THE ELLIPTIC BLENDING MODEL (Ellipting Blending Model에 의한 자연대류 및 열성층 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.77-82
    • /
    • 2006
  • Evaluation of the elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of natural convection and thermal stratification. For a natural convection problem the models are applied to the prediction of a natural convection in a rectangular cavity and the computed results are compared with the experimental data. It is shown that the elliptic blending model predicts as good as or better than the existing second moment differential stress and flux model for the mean velocity and turbulent quantities. For thermal stratification problem the models are applied to the thermal stratification in the upper plenum of liquid metal reactor. In this analysis there exist much differences between the turbulence models in predicting the temporal variation of temperature. The V2-F model and EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

Two Dimensional Analysis for the External Vessel Cooling Experiment

  • Yoon, Ho-Jun;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.410-423
    • /
    • 2000
  • A two-dimensional numerical model is developed and applied to the LAVA-EXV tests performed at the Korea Atomic Energy Research Institute (KAERI) to investigate the external cooling effect on the thermal margin to failure of a reactor pressure vessel (RPV) during a severe accident. The computational program was written to predict the temperature profile of a two-dimensional spherical vessel segment accounting for the conjugate heat transfer mechanisms of conduction through the debris and the vessel, natural convection within the molten debris pool, and the possible ablation of the vessel wall in contact with the high temperature melt. Results of the sensitivity analysis and comparison with the LAVA-EXV test data indicated that the developed computational tool carries a high potential for simulating the thermal behavior of the RPV during a core melt relocation accident. It is concluded that the main factors affecting the RPV failure are the natural convection within the debris pool and the ablation of the metal vessel, The simplistic natural convection model adopted in the computational program partly made up for the absence of the mechanistic momentum consideration in this study. Uncertainties in the prediction will be reduced when the natural convection and ablation phenomena are more rigorously dealt with in the code, and if more accurate initial and time-dependent conditions are supplied from the test in terms of material composition and its associated thermophysical properties.

  • PDF

A study of natural convection in non-Newtonian fluids induced by a vertical wavy surface (기복을 이루는 수직벽에서 비뉴턴유체의 자연대류에 관한 연구)

  • Kim, Eun-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3686-3694
    • /
    • 1996
  • A numerical investigation of natural convection flow along irregular vertical surfaces is reported. A transformation method is applied to the problem of natural convection under the assumption of a large Grashof number. A vertical wavy surface is used as an example to demonstrate the advantages of the transformation method, and to show the heat transfer mechanism near such surfaces. Surface non-uniformities on the boundary layer flow induced by a constant was temperature, semi-infinite surface are investigated. Also the effects of Prandtl number, flow index, and surface amplitude in Non-Newtonian fluids are discussed. When possible, the comparison of the numerical results shows a good agreement. The amplitude is proportional to the amplitude of a wavy surface. The results demonstrate that the local heat flux along a wavy surface is smaller than that of a flat surface. The frequency of the wavy surface is half that of the local heat transfer rate. The amplitude of the local Nusselt number gradually decreases downstream where the natural convection boundary layer grows thick.

Validation of Turbulence Models for Analysis of a Single-Phase Turbulent Natural Convection (단상 난류 자연대류 해석을 위한 난류 모델링 정확도 검증)

  • Song, Ik-Joon;Shin, Kyung-Jin;Kim, Jungwoo;Park, Ik Kyu;Lee, Seung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.682-686
    • /
    • 2015
  • The objective of this study is to validate the performance of the current $k-{\epsilon}$ turbulence model for a single-phase turbulent natural convection, which has been considered an important phenomenon in nuclear safety. As a result, the natural convection problems in the 2D and 3D cavities previously studied are calculated by using the ANSYS Fluent software. The present results show that the current $k-{\epsilon}$ turbulent model accounting for the buoyancy effect is in good agreement with the previous results for the natural convection problems in the 2D and 3D cavities although some improvements should be required to get better prediction.

NUMERICAL STUDY FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE WITH SQUARE ADIABATIC BODY (사각 단열체가 존재하는 밀폐계 내부에서 Pr수 변화에 따른 자연대류 현상에 대한 수치적 연구)

  • Lee, Jae-Ryong
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2011
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body at its centered area was studied. Three different Prandtl numbers (0.01, 0.7 and 7) were considered for an effect of the Prandtl number on natural convection. A two-dimensional solution for unsteady natural convection was obtained, using Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10^4$ to $10^6$. It had been experimentally and numerically reported [1,2] that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers was presented to show the overall heat transfer characteristics in the system. And also, the isotherms and streamline distributions were presented in detail to compare the physics related to their thermal behavior.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks (다양한 형상의 Heat Sink 열저항 특성에 관한 실험적 연구)

  • 김종하;윤재호;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.676-682
    • /
    • 2002
  • This paper has been made to investigate the thermal performance characteristics for the several types of heat sinks such as extruded heat sink, aluminum foam heat sink, layered heat sink. The various types heat sinks are prepared and tested for natural convection as well as forced convection. The experimental results for natural convection are compared to those for three types of heat sink so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for layered heat sink, extruded heat sink and aluminum foam heat sink are almost comparable to those under natural convection and forced convection. The forced convection of layered heat sink become 1.2 times as high as those of extruded heat sink, and the forced convection of extruded heat sink become 1.2 times as high as those of aluminum foam heat sink. This study shows that bar height, bar distance and number of bar for layered heat sink are important parameters, which have a serious influence on thermal performance for layered heat sinks.

THE STABILITY IN AN INCLINED LAYER OF VISCOELASTIC FLUID FLOW OF HYDROELECTRIC NATURAL CONVECTION

  • El-Bary, A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.17-27
    • /
    • 2005
  • The problem of the onset stability in an inclined layer of dielectric viscoelastic fluid (Walter's liquid B') is studied. The analysis is made under the simultaneous action of a normal a.c. electric field and the natural convection flow due to uniformly distributed internal heat sources. The power series method used to obtain the eigen value equation which is then solved numerically to obtain the stable and unstable solutions. Numerical results are given and illustrated graphically.

  • PDF

A Study on Temperature and Velocity Profiles of Natural Convection in a Square Enclosure (사각 밀폐공간내의 자연대류의 온도 및 속도 분포에 관한 연구)

  • Chang, Tae-Hyun;Lee, Jong-Boong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.391-397
    • /
    • 2004
  • This paper presented results of experimental and numerical work for natural convection in a square enclosure by using PIV technique. 2D PIV technique and liquid crystal are employed for velocity and temperature measurement in water. The numerical method used this work is a CFD corde, STAR-CD. The experimental work are compared with these of numerical results.

  • PDF