• 제목/요약/키워드: natural convection

검색결과 851건 처리시간 0.026초

피에조 팬 냉각 성능 측정을 위한 실험장치 구축 (Experimental Facility for Measuring the Cooling Performance of a Piezoelectric Fan)

  • 오명훈;박수현;고재익;최민석
    • 한국가시화정보학회지
    • /
    • 제16권3호
    • /
    • pp.52-58
    • /
    • 2018
  • In this study, an experimental facility has been built to measure the cooling performance of a piezoelectric fan. The facility is composed of a heat source made of $50{\mu}m$ Ni-Cr foil, a piezoelectric fan and a rotary fan for cooling the heat source. For two cases where the foil is vertical or horizontal, the surface temperature on the foil has been measured by an IR camera with and without cooling and the cooling performance of both fans has been analyzed. With cooling by both fans, the rotary fan lowers the surface temperature of the foil as a whole, while the piezoelectric fan lowers the surface temperature at the center of the foil locally. It is also found that the cooling effectiveness of the piezoelectric fan is higher on the horizontal foil than on the vertical foil because the natural convection interferes with the jet from the piezoelectric fan.

Experimental testing and evaluation of coating on cables in container fire test facility

  • Aurtherson, P. Babu;Hemanandh, J.;Devarajan, Yuvarajan;Mishra, Ruby;Abraham, Biju Cherian
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1652-1656
    • /
    • 2022
  • Fire tests were conducted on cables using fire-retardant paint employed in nuclear power plants that transmit electrical power, control and instrument signals. The failure criteria of various power and control cables coated with fire retardant coating at three different coating thicknesses (~0.5 mm, 1.0 mm & 1.5 mm) were studied under direct flame test using Container Fire Test Facility (CFTF) based on standard tests for bare cables. A direct flame fire test was conducted for 10 min with an LPG ribbon burner rated at ten by fixing the cable samples in a vertical cable track. Inner sheath temperature was measured until ambient conditions were achieved by natural convection. The cables are visually evaluated for damage and the mass loss percentage. Cable functionality is ascertained by checking for electrical continuity for each sample. The thickness of cable coating on fire exposure is also studied by comparing the transient variation of inner sheath temperature along the Cable length. This study also evaluated the adequacy of fire-retardant coating on cables used for safety-critical equipment in nuclear power plants.

수직냉각관내에서 상변화물질의 응고에 관한 실험적 연구 (An Experimental Study on Freezing of Phase Change Material in a Cooled Vertical Tube)

  • 이재목;이채문;임장순
    • 대한설비공학회지:설비저널
    • /
    • 제13권4호
    • /
    • pp.223-229
    • /
    • 1984
  • Experiments were performed for freezing of an initially superheated or nonsuperheated liquid phase in a cooled vertical tube. The liquid was placed in a copper tube whose surface maintained a uniform temperature during the data run and the freezing occurred in a copper tube. The phase change medium was n-odtadecane, a paraffin which freezes at about $61^{\circ}C$. Measurements were made which yielded information about the time dependence of the freezing front, of the amount of frozen mass, and of the various energy components extracted from the tube. The time-wise decay of the initial liquid superheat was also measured. Initial superheat of the liquid tends to moderately diminish the rozen mass and associated latent energy extraction at small times but has lit tie effect on these quantities at large tiems. Natural convection in the liquid Plays a modest role only at small times and disappears when the superheat decay to zero. Although the latent energy constitutes the largest contributor to the total extracted energy, the sensible energy components can make a significant contribution, especially at large tube wall subcoolings, large initial liquid superheating and short freezing time.

  • PDF

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Application of CFD model for passive autocatalytic recombiners to formulate an empirical correlation for integral containment analysis

  • Vikram Shukla;Bhuvaneshwar Gera;Sunil Ganju;Salil Varma;N.K. Maheshwari;P.K. Guchhait;S. Sengupta
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4159-4169
    • /
    • 2022
  • Hydrogen mitigation using Passive Autocatalytic Recombiners (PARs) has been widely accepted methodology inside reactor containment of accident struck Nuclear Power Plants. They reduce hydrogen concentration inside reactor containment by recombining it with oxygen from containment air on catalyst surfaces at ambient temperatures. Exothermic heat of reaction drives the product steam upwards, establishing natural convection around PAR, thus invoking homogenisation inside containment. CFD models resolving individual catalyst plate channels of PAR provide good insight about temperature and hydrogen recombination. But very thin catalyst plates compared to large dimensions of the enclosures involved result in intensive calculations. Hence, empirical correlations specific to PARs being modelled are often used in integral containment studies. In this work, an experimentally validated CFD model of PAR has been employed for developing an empirical correlation for Indian PAR. For this purpose, detailed parametric study involving different gas mixture variables at PAR inlet has been performed. For each case, respective values of gas mixture variables at recombiner outlet have been tabulated. The obtained data matrix has then been processed using regression analysis to obtain a set of correlations between inlet and outlet variables. The empirical correlation thus developed, can be easily plugged into commercially available CFD software.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구 (Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material)

  • 윤재형;현수웅;정희준;신동호
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.34-45
    • /
    • 2023
  • When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

도시가스 수직 배관 내 정지된 수소-메탄 혼합가스의 성층화 현상 연구 (A Study on Stratification Phenomena of Still Hydrogen-Methane Gas Mixture in a Vertical Urban Gas Pipe)

  • 김태균;조정민;성재용
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.68-78
    • /
    • 2024
  • The stratification phenomena of still hydrogen (20%) and methane (80%) gas mixture in a vertical urban gas pipe have been investigated by simulating the flows based on a mixture model. The stratification is accompanied with the natural convection by the buoyancy force. The hydrogen volume fraction in the upper sections of the pipe increases with time but the increasing rate gets smaller due to the weaker buoyancy force. The pipe with a smaller diameter exhibits a higher peak of hydrogen concentration. The size of vortices is proportional to the pipe diameter. The slip velocity between hydrogen and methane oscillates with a large amplitude at the earlier stage of stratification and then the amplitude decreases sharply. The slip velocity decreases with the diameter, making the stratification become slower. The length of pipe does not affect the stratification since the pipe is sufficiently long relative to the size of vortices.

액체수소 저장용기의 와류 구조 억제 및 증발률 저감을 위한 측벽 rib 설계 (Design of Sidewall Ribs for Suppressing Vortex Structures and Reducing Evaporation Rate in Liquid Hydrogen Storage Tank)

  • 김병건;김현기;박윤정;임민규;박성우;황진율
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.11-19
    • /
    • 2024
  • We performed numerical simulations on a C-type liquid hydrogen (LH2) storage tank for commercial vehicles to reduce evaporation rates by manipulating vortical structures. Owing to external heat, natural convection occurs inside the tank, leading to the enhanced evaporation of LH2. We observed that the regions of high magnitude vorticity correlate with those of high evaporation rates. Specifically, vortical structures in the side section area show higher vorticity magnitude and evaporation rates compared to those in the midsection area. To suppress these vortical motions, we installed an array of ribs at intervals corresponding to the mean diameter of the vortical structures. As a result, the area occupied by vortical structures in the side section area decreased, leading to a reduction in evaporation speed by approximately 2.3 times. This study elucidates the internal evaporation mechanism in storage tanks from the perspective of flow structures and potentially contributes to minimizing the boil-off rate in cryogenic storage tanks.