DOI QR코드

DOI QR Code

Design of Sidewall Ribs for Suppressing Vortex Structures and Reducing Evaporation Rate in Liquid Hydrogen Storage Tank

액체수소 저장용기의 와류 구조 억제 및 증발률 저감을 위한 측벽 rib 설계

  • Byeonggeon Kim (School of Mechanical Engineering, Pusan National University) ;
  • Hyungi Kim (School of Mechanical Engineering, Pusan National University) ;
  • Yunjeong Park (School of Mechanical Engineering, Pusan National University) ;
  • Mingyu Im (School of Mechanical Engineering, Pusan National University) ;
  • Sungwoo Park (School of Mechanical Engineering, Pusan National University) ;
  • Jinyul Hwang (School of Mechanical Engineering, Pusan National University)
  • 김병건 ;
  • 김현기 ;
  • 박윤정 ;
  • 임민규 ;
  • 박성우 ;
  • 황진율
  • Received : 2024.02.22
  • Accepted : 2024.03.29
  • Published : 2024.07.31

Abstract

We performed numerical simulations on a C-type liquid hydrogen (LH2) storage tank for commercial vehicles to reduce evaporation rates by manipulating vortical structures. Owing to external heat, natural convection occurs inside the tank, leading to the enhanced evaporation of LH2. We observed that the regions of high magnitude vorticity correlate with those of high evaporation rates. Specifically, vortical structures in the side section area show higher vorticity magnitude and evaporation rates compared to those in the midsection area. To suppress these vortical motions, we installed an array of ribs at intervals corresponding to the mean diameter of the vortical structures. As a result, the area occupied by vortical structures in the side section area decreased, leading to a reduction in evaporation speed by approximately 2.3 times. This study elucidates the internal evaporation mechanism in storage tanks from the perspective of flow structures and potentially contributes to minimizing the boil-off rate in cryogenic storage tanks.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. 환경부, 2022, 2021 년 부문별 배출량.
  2. Rivard, E., Trudeau, M. and Zaghib, K., 2019, "Hydrogen storage for mobility: A review," Materials, Vol. 12(12), pp. 1973. 
  3. Furuhama, S., Hiruma, M. and Enomoto, Y., 1978, "Development of a liquid hydrogen car," International Journal of Hydrogen Energy, Vol. 3(1), pp. 61-81. 
  4. Preuster, P., Alekseev, A. and Wasserscheid, P., 2017, "Hydrogen storage technologies for future energy systems," Annual review of chemical and biomolecular engineering, Vol. 8, pp. 445-471. 
  5. Choi, S. W., Lee, W. I. and Kim, H. S., 2017, "Numerical analysis of convective flow and thermal stratification in a cryogenic storage tank," Numerical Heat Transfer, Part A: Applications, Vol. 71(4), pp. 402-422. 
  6. Jeon, G.-M., Park, J.-C. and Choi, S., 2021, "Multiphase-thermal simulation on BOG/BOR estimation due to phase change in cryogenic liquid storage tanks," Applied Thermal Engineering, Vol. 184, pp. 116264. 
  7. Babac, G., Sisman, A. and Cimen, T., 2009, "Two-dimensional thermal analysis of liquid hydrogen tank insulation," International Journal of Hydrogen Energy, Vol. 34(15), pp. 6357-6363. 
  8. Liu, Z., Feng, Y., Lei, G. and Li, Y., 2019, "Fluid sloshing dynamic performance in a liquid hydrogen tank," International Journal of Hydrogen Energy, Vol. 44(26), pp. 13885-13894. 
  9. Sparrow, E. M. and Husar, R., 1969, "Longitudinal vortices in natural convection flow on inclined plates," Journal of Fluid Mechanics, Vol. 37(2), pp. 251-255. 
  10. Vasseur, P., Satish, M. and Robillard, L., 1987, "Natural convection in a thin, inclined, porous layer exposed to a constant heat flux," International Journal of Heat and Mass Transfer, Vol. 30(3), pp. 537-549. 
  11. Bilgen, E. and Oztop, H., 2005, "Natural convection heat transfer in partially open inclined square cavities," International Journal of Heat and Mass Transfer, Vol. 48(8), pp. 1470-1479. 
  12. Henze, M., Von Wolfersdorf, J., Weigand, B., Dietz, C. and Neumann, S., 2011, "Flow and heat transfer characteristics behind vortex generators-a benchmark dataset," International Journal of Heat and Fluid Flow, Vol. 32(1), pp. 318-328. 
  13. Awais, M. and Bhuiyan, A. A., 2018, "Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities," Thermal Science and Engineering Progress, Vol. 5, pp. 524-545. 
  14. Tanda, G., 1997, "Natural convection heat transfer in vertical channels with and without transverse square ribs," International Journal of Heat and Mass Transfer, Vol. 40(9), pp. 2173-2185. 
  15. Khurana, T. K., Prasad, B., Ramamurthi, K. and Murthy, S. S., 2006, "Thermal stratification in ribbed liquid hydrogen storage tanks," International Journal of Hydrogen Energy, Vol. 31(15), pp. 2299-2309. 
  16. Xia, S., Li, Y. and Xie, F., 2023, "Numerical study on particle distribution characteristics of slush hydrogen in a cryogenic tank," International Journal of Hydrogen Energy, Vol. 48(40), pp. 15280-15291. 
  17. Kumar, S. P., Prasad, B. V. S. S. S., Venkatarathnam, G., Ramamurthi, K. and Murthy, S. S., 2007, "Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios," International Journal of Hydrogen Energy, Vol. 32(12), pp. 1954-1960. 
  18. Jeong, J. and Hussain, F., 1995, "On the identification of a vortex," Journal of Fluid Mechanics, Vol. 285, pp. 69-94. 
  19. Hwang, J. and Sung, H. J., 2018, "Wall-attached structures of velocity fluctuations in a turbulent boundary layer," Journal of Fluid Mechanics, Vol. 856, pp. 958-983. 
  20. Park, S. and Hwang, J., 2023, "Analysis of droplet formation under sloshing phenomena in liquid fuel tank," Journal of the Korean Society of Visualization, Vol. 21(2), pp. 102-110.