• Title/Summary/Keyword: natural convection

Search Result 851, Processing Time 0.02 seconds

Comparison of the Effects of Straight and Twisted Heat Trace Installations Based on Three-dimensional Unsteady Heat Transfer (열선의 직선시공과 감기시공의 동파방지 효과 비교를 위한 3차원 비정상 수치해석)

  • Choi, Myoung-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • This paper numerically examines, straight and twisted electrical heat trace installations for their anti-freezing effects on water inside a pipe. The unsteady incompressible Navier-Stokes equations coupled with an energy equation were solved to compare the two installation methods. The heat conduction of the pipe with a heat source interacts with the natural convection of the water, and the conjugate heat transfer was considered using a commercial code (ANSYS-FLUENT) based on a SIMPLE-type algorithm. Numerical experiments, were done to investigate the isotherms and the vector fields in the water region to extract the evolutions of the minimum and maximum temperatures of the water inside the pipe. There was no substantial difference in the anti-freezing effects between the straight and twisted. Therefore, the straight installation is recommended after considering the damage and short circuit behavior of the electrical heat trace.

A New Natural Convection Heat Transfer Correlation for Laminar and Turbulent Film Condensation Derived from a Statistical Analysis of Existing Models and Data (기존모델과 실험자료의 통계적 분석에 의해 유도한 층류 및 난류 막응축에 대한 새로운 자연대류 열전달 관계식)

  • Chun, Moon-Hyun;Kim, Kyun-Tae
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.200-209
    • /
    • 1991
  • A new semi-empirical average heat transfer correlation applicable for both laminar and turbulent film-wise condensation on a vertical surface has been presented. Re functional form of the present correlation is based on the representative existing correlations for laminar and turbulent film flows, whereas the numerical coefficients of the present correlation have been determined by the least squares method using experimental data obtained from the open literatures. In addition, the performance of the present as well as the seven existing correlations (four for laminar and three for turbulent film flow regimes) were evaluated for their accuracy and the range of application. The result shows that for laminar film filow regimes Zazuli's and the present correlations give the samllest values of mean error, whereas for turbulent film How regimes Kirkbride and Badger's and the present correlations produce the smallest values of mean error.

  • PDF

Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water (얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구)

  • Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

Wax Barrier Effect on Migration Behaviors of Antiozonants in NR Vulcanizates (천연고무 가류물에서 왁스막이 오존노화방지제의 이동에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • Waxes compounded into rubber migrate to the surface and form a protection film on the rubber surface. In general, antiozonants were used with wax to protect ozonation of rubber. Influence of wax barrier formed on the surface of a rubber vulcanizate on migration of antiozonants was studied using natural rubber (NR) vulcanizates containing various type waxes. IPPD (N-isopropyl-N'-phenyl-p-phenylenediamine), HPPD (N-l,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), SBPPD (N,N'-di(sec-butyl)-p-phenylenediamine), and DMPPD (N,N'-di(1,4-dimethylpentyl)-p-phenylenediamine) were employed as antiozonants. Migration experiments were performed at constant temperatures of 60 and $80^{\circ}C$ for 10, 20, 30 days using a convection oven. The migration rates of the antiozonants in the vulcanizate without wax are faster than those in the vulcanizates containing waxes. The antiozonants migrate slower in the vulcanizate containing wax with a high molecular weight distribution than in the vulcanizate with a low one. The migration rates of DMPPD and SBPPD are faster than those of HPPD and IPPD.

  • PDF

A Study of Heat Transfer in a Horizontal Ice Storage Tube - Inward Freezing Process with Volume Expansion of Ice - (수평 원통형 빙축열조에서의 열전달에 관한 연구 - 얼음의 부피 팽창을 고려하는 내향 응고 실험 -)

  • Lee, J.Y.;Kim, Y.K.;Cho, N.C.;Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • Heat transfer phenomena during inward freezing process of the water in a horizontal cylinder were experimentally studied. The cooling temperature of a wall more significantly affects the timewise average temperature than the initial superheating temperature of the water. In addition, it was absolved that the timewise average temperature was influenced by the initial volume ratio of the water($V_l/V_{tot}$) at the same temperature conditons. One the other hand, the freezing speed of the upper part in the water-ice interface was quickly progressed due to natural convection. Furthermore, experimental observation showed that the frozen mass fraction($M_s/M_{tot}$) was influenced by the initial volume ratio of the water($V_l/V_{tot}$). It was noted that the frozen mass fraction for each $V_l/V_{tot}$ represented by $Ste^*$ and Fo.

  • PDF

The Analysis of Acoustic Waves generated by a TA(ThermoAcoustic) Laser Pair (열음향(Thermoacoustic) 레이저의 음향파 특성 분석)

  • Oh, Seung-Jin;Chen, Kuan;Lee, Yoon-Joon;Shin, Sang-Woong;Lim, Sang-Hoon;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • Sound waves and acoustic energy generated by two identical TA (ThermoAcoustic) lasers were analyzed and studied. One end of the ceramic stack was heated by a thin NiCr wire wound around that end. The other end of the stack was cooled by natural convection of atmospheric air. The wavelength of the sound waves generated by a single TA laser was four times the tube length and the amplitude of the waves increased with the heating rate. SPL (SoundPressure Level) meters and microphones were employed to measure and study the sound waves at different distances from the glass tube opening and at the focusing point of the TA laser pair for different laser position arrangements. The sound waves of the two TA lasers at the focusing point were found to be almost 180 degrees out of phase when the openings of the two lasers were very close to each other and the angle between the laser axes was small. When the two TA lasers were placed far apart, the sound wave amplitudes and the phase difference between the two laser outputs varied periodically with time. The frequencies of the sound waves changed when the openings of the two TA lasers were in close vicinity and the angle between the laser axes exceeded a certain value. In this case, the glass tube opening was no longer a pressure anti-node and the wavelength of the fundamental mode was not equal to four times the tube length.

Vorticity Based Analysis of the Viscous Flow around an Impulsively Started Cylinder (와도를 기저로 한 초기 순간 출발하는 실린더 주위의 점성유동해석)

  • Kwang-Soo Kim;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • This paper presents a vorticity-based numerical method for analyzing an incompressible Newtonian viscous flow around an impulsively started cylinder. The Navier-Stockes equations have a natural Helmholtz decomposition. The vorticity transport equation and the pressure equation are derived from this decoupled form. The associated boundary conditions are dynamic for the vorticity and pressure variables representing the coupling relation between them and the force balance on the wall. The various numerical treatments for solving the governing equations are introduced. According to Wu et al.(1994), the boundary conditions are decoupled, keeping the dynamic relation between vorticity and pressure. The vorticity transport equation is formulated by FVM and TVD(Total Variation Diminishing) scheme is used for the convection term. An integral approach similar to the panel method is used to obtain the velocity field for a given vorticity field and the pressure field, instead of the conventional differential approaches. In the numerical process, the structured grid is generated. The results are compared to existing numerical and analytic results for the validity of the present method.

  • PDF

Characteristics of Hydration Heat Control of Mass Concrete using Pulsating Heat Pipe in the Winter Season (진동형 히트 파이프를 이용한 매스 콘크리트의 겨울철 수화열 제어 특성)

  • Yang, Tae-Jin;Kim, Jeung-Hoon;Youm, Chi-Sun;Kim, Myung-Sik;Kim, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-174
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure, the heat of hydration may cause serious thermal cracking. This paper reports results of hydration heat control in mass concrete using the oscillating heat pipe. There were three RC box molds ($1.2m{\times}1.8m{\times}2.4m$) which were different from each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of 10 turns of serpentine type copper pipe whose outer and inner diameters were 4 and 2.8 mm respectively. The working fluid was R-22 and charging ratio was 40% by volume. The temperature of the concrete core was approximately $55^{\circ}C$ in the winter without pulsating heat pipe. For a concrete with pulsating heat pipe, however, the temperature difference with the outdoor one reduced up to $12^{\circ}C$. The index figure of crack was varied from 0.75 to 1.38.

Studies on the Focusing Solar Agricultural Crop Dryer - Part1. Heat Efficiency of Aluminum-laminated Aeryl Film Solar Heater - (농산물(農産物) 건조용(乾燥用) 곡면집광식(曲面集光式) 태양열(太陽熱) 이용(利用) 장치(裝置)에 관한 연구(硏究) - 제1보(第1報). 알루미늄-아크릴 필림을 이용(利用)한 태양열(太陽熱) 집열장치(集熱裝置)의 열이용(熱利用) 효율(?率) -)

  • Chun, Jae-Kun;Mok, Chul-Kyoon;Kim, Hyun-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.8-12
    • /
    • 1979
  • A cylindrical solar energy focusing collector constructed using aluminum-laminated film plastered on the acrylic plate and examined its performances under the Korean local weather conditions. The reflector surface of this collector· evidenced the reflectivity of 66.1%,which was satisfactory value that could be applicable to the solar collector for its low price and at·availability. Collector efficiency measured at the heat exchanger fluid in absorber-copper pipe black colored was 73% and the resulting natural convection of the heat transfer media (water) was recorded up to 2.82 cm/sec. The overall efficiency of the solar heater in operation was 28.6% and it was correlated with the solar energy input and the temperature elevation difference gained.

  • PDF