• Title/Summary/Keyword: natural cellulose

Search Result 266, Processing Time 0.026 seconds

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending(I) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(I))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Regenerated composite fibers are prepared from solution(styela clava tunics /poly vinyl alchol) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt/wt) as a solvent by dry-wet spinning. The chemical cellulose (94%, ${\alpha}$-cellulose content) used for this study is extracted from styela clava tunics (SCT, Midduck), which are treated in chemical process and mechanical grinding. The structure and physical properties of regenerated composite fibers were investigated through IR-spetra, DSC, TGA and SEM. The optimal blend ratio of SCT/PVA for spinning solution was 70/30 and the total weight was 4% concentrations in NMMO/water solvent system. The fiber density, moisture contents and the degree of swelling were $1.5(g/cm^3)$ 10.2(%) and 365(%), respectively. The crystallinity index of composite fibers are decreased as the PVA contents increased. Thermal decomposition of composite fibers took place in two stages at around $250^{\circ}C$ and $550^{\circ}C$. The best thermal stability was obtained with 30% PVA contents.

Engineering of Sulfolobus acidocaldarius for Hemicellulosic Biomass Utilization

  • Lee, Areum;Jin, Hyeju;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.663-671
    • /
    • 2022
  • The saccharification of cellulose and hemicellulose is essential for utilizing lignocellulosic biomass as a biofuel. While cellulose is composed of glucose only, hemicelluloses are composed of diverse sugars such as xylose, arabinose, glucose, and galactose. Sulfolobus acidocaldarius is a good potential candidate for biofuel production using hemicellulose as this archaeon simultaneously utilizes various sugars. However, S. acidocaldarius has to be manipulated because the enzyme that breaks down hemicellulose is not present in this species. Here, we engineered S. acidocaldarius to utilize xylan as a carbon source by introducing xylanase and β-xylosidase. Heterologous expression of β-xylosidase enhanced the organism's degradability and utilization of xylooligosaccharides (XOS), but the mutant still failed to grow when xylan was provided as a carbon source. S. acidocaldarius exhibited the ability to degrade xylan into XOS when xylanase was introduced, but no further degradation proceeded after this sole reaction. Following cell growth and enzyme reaction, S. acidocaldarius successfully utilized xylan in the synergy between xylanase and β-xylosidase.

Effect of Dyeing Bath, Mordanting and Chitosan Treatment on the Dyeing of Natural Proteinic Fabrics Using African Marigold(Tagetes erecta L.) Petals Extract (African Marigold의 카로티노이드계(系) 색소(色素)에 의한 단백질섬유(蛋白質纖維) 염색(染色)에서 염욕(染浴)의 pH, 매염제(媒染劑), Chitosan 처리(處理)에 의한 염색효과(染色效果))

  • Kim, Kyung-Sun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.11 no.2
    • /
    • pp.92-101
    • /
    • 2007
  • This research was carried out following the preceding research on natural cellulose fabrics dyed with extract of fresh african marigold petals. Dyeability on fabrics was tested by dyeing with wool and silk which are natural protein fibers. Dyeing tests were carried out under different pH of the dye solution and mordants, examining the changes in the surface color, K/S value, and maximum absorption wavelength. The probability of improving dyeability was investigated by pre-mordanting with pre-treated chitosan. Wool fabrics showed color tone of medium or less saturation and brightness, in dark yellow color series. An orange color of high saturation was only obtained by tin mordanting. Wool showed higher K/S value than cellulose fibers. In summary, marigold dye has more affinity for protein fibers. It showed better dye effect in wool than silk. The chitosan pre-treatment and pre-mordanting lowered the K/S value of wool, which showed that chitosan pre-treatment does not improve dye uptake. However, different from the dyeing carried out by pre-mordanting without pre-treatment with chitosan, more diversified colors could be obtained by mordants. Therefore, for the dyeing natural protein fibers with marigold extract, post-mordanting does not require chitosan pre-treatment. However, pre-mordanting with chitosan pre-treatment could implement diverse colors. Considering its dyeing behaviors which are similar in both natural cellulose and protein fibers, african marigold extracts can be evaluated as a stable and highly practical dye.

Strain Sensor Application using Cellulose Electro-Active Paper (EAPap) (셀룰로오스 기반 Electro-Active Paper (EAPap)를 이용한 변형률 센서 응용)

  • Jang, Sang-Dong;Lee, Sang-Woo;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.462-465
    • /
    • 2009
  • Cellulose based electro-active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. An actuating mechanism of EAPap is revealed to be the combination of ion migration effect and piezoelectricity. EAPap can generate the electrical current and voltage when the mechanical stress applied due to its electro-mechanical characteristics. In this paper, we investigated the feasibility of EAPap as a mechanical strain sensor.

  • PDF

Experimental Study on the Dispersion Characteristic of Cellulose Chip Fiber in Concrete (콘크리트내 셀룰로오스 칩 화이버의분산특성에 관한 실험적 연구)

  • Park, Jong-Jin;Lee, Han-Seung;Choe, Jin-Man;Lee, Seong-Yeon;You, Jo-Hyeong;Wang, Xiayong;Lee, Sang-Hyun;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.677-680
    • /
    • 2006
  • Tensile as well as flexural strengths of concrete can be substantially increased by introducing closely spaced fibers that would obstruct the propagation of microcracks, therefore delaying the onset of tension cracks and increasing the tensile strength of the material. Fibers of various shapes and sizes produced from steel, plastic, glass and natural materials are being used. In this study, we used cellulose chip fiber to decrease the shrinkage crack in mortar and concrete. Specially, we have studied the dispersion characteristic of cellulose chip fiber. As a result, it was assumed that the slurry type of cellulose chip fiber is very effective to disperse the fiber in mortar and concrete.

  • PDF

Cellulose based Electro-Active Paper Actuator: Materials and Applications (셀룰로오스 기반 Electro-Active Paper 작동기: 재료 및 응용)

  • Jang, Sang-Dong;Yang, Sang-Yeol;Ko, Hyun-U;Kim, Dong-Gu;Mun, Sung-Chul;Kang, Jin-Ho;Jung, Hye-Jun;Kim, Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1227-1233
    • /
    • 2011
  • Cellulose Electro-Active Paper (EAPap) has been known as a new smart material that is attractive for a bio-mimetic actuator due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage and low power consumption. Cellulose EAPap is made by regenerating cellulose and aligning its micro-fibrils. This paper introduces several EAPap materials, which are based on natural cellulose and its hybrid nanocomposites mixed/blended with inorganic functional materials. By chemically bonding and mixing with carbon nanotubes and inorganic nanoparticles, the cellulose EAPap can be a hybrid nanocomposite that has versatile properties and can meet material requirements for many applications. Recent research trend of the cellulose EAPap is introduced in terms of material preparations as well as application devices including actuators, temperature and humidity sensors, biosensors, chemical sensors, and so on. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for bio-mimetic robotics, surveillance and micro-aerial vehicles.

Physical Property Evaluation of Chitosan Mordanted Green Tea Dyed Cellulose - Focusing on the physical property changes upon the repetition of treatment -

  • Jung, Hye-Kyung;Kim, Sin-Hee
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.61-72
    • /
    • 2008
  • The UV-protection effect of green-tea dyed fabrics was reported in our previous studies. The chitosan was used as a natural mordant of cellulose fiber for green tea extract because chitosan is a natural bio-polymer. The increase in the UV protection property of summer cellulose fabrics, cotton and linen, upon the repetition of chitosan mordanting and green tea dyeing was observed. However, the physical property change would be followed by this repeated wet processing of the cellulose fabric. Therefore, the physical changes of the chitosan mordanted and green tea dyed cotton and linen fabrics were evaluated by KES-FB system. Tensile, shear, bending, compression, and surface characteristics were tested upon the repetition of mordanting and dyeing treatments. Linearity of tensile force increased in the treated cotton and linen samples. Tensile energy and resilience decreased in all treated fabrics. Shear stiffness increased in the treated cotton and linen in general. Shear hysteresis was increased in all cotton samples and some linen samples. In cotton, the bending rigidity in all treated cottons increased except C3G3. As the chitosan mordanting numbers increased, the bending rigidity tended to decrease. In linen, the bending rigidity and hysteresis increased in all treated samples. Compressional energy and resilience increased as the number of chitosan mordanting increased both in cotton and linen. This could be the result of the increase in thickness upon chitosan mordanting. Surface coefficient of friction increased in the treated cotton and linen in general. Surface roughness tended to increase in cotton.

Effects of Temperature and Compost Conditions on the Biodegradation of Degradable Polymers

  • Jung, Eun-Joo;Shin, Pyong-Kyun;Bae, Hee-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.464-468
    • /
    • 1999
  • The effectiveness of current biodegradation test methods for degradable polymers under controlled composting conditions was studied in regards to the test temperature and compost condition. When biodegradability tests for the natural (starch, cellulose, PHB/HV) and synthetic (PCL, SG, PLA) polymers were conducted at temperature levels of 35 and $55^{\circ}C$ with compost cured at ambient temperature, the degradations of cellulose and starch were higher at $35^{\circ}C$ because of the priming effect. On the other hand, degradations of other polymers were higher at $55^{\circ}C$. In the biodegradation test at $55^{\circ}C$, compost harvested right after the thermophilic degradation stage showed higher biodegradation activities than the cured compost for both the synthetic aliphatic polyester (SG) and a natural polymer, cellulose. These results suggest that the biodegradation test conducted at $55^{\circ}C$ with the compost, harvested right after the thermophilic degradation stage during composting, showed the highest biodegradation activity under controlled composting conditions.

  • PDF

Dyeing on cellulose fibers by the solution extracted from natural fresh leaves of indigo plant. (천연 생 쪽잎 추출액을 이용한 셀룰로오스계 섬유의 염색)

  • Ju Jeong ah;Ryu Hyo seon
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.19-27
    • /
    • 2004
  • The dyeing on cellulose fibers such as cotton and viscose viscose rayon was carried out by the use of solution extracted from natural fresh leaves of indigo plant under several dyeing conditions. The dyeing affinity of viscose rayon was higher than that of cotton. The total K/S value of dyed fabrics was considerably increased with repeated dyeings, while a dyeing time has a little influence on it. Both fibers were hardly dyed by indigo at $60^{\circ)$ and cotton was dyed better at $40^{\circ)$ than at $20^{\circ)$, but in viscose rayon, a little difference of total K/S was shown between $20^{\circ)$ and $40^{\circ)$. The color change of dyed fabric according to dyeing conditions was evaluated by the CIELAB color system. viscose rayon had a lower $b^*$ so that it looked bluer than cotton and when the celluose fibers were dyed by indigo plant at the lower temperature, the bluer it looked. By repeated dyeings the $b^*$value of dyed fabrics was much increased but the $a^*$ value was little influenced and in case of viscose rayon the change was considerable.

Development of Retort Packaging Material Using Cellulose Nano Fiber (셀룰로오스 나노 파이버를 적용한 레토르트 포장재 개발)

  • Lee, Jinhee;Choi, Jeongrak;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • As modern society develops, it becomes very complex and diverse, and interests in the convenience of life and the natural environment are gradually increasing. Products used in our daily life are also changing according to the needs of consumers, and food packaging is one of them. In particular, retort packaging materials have been used for the purpose of long-term preservation of contents, but the appearance of products suitable for recent environmental issues has been somewhat delayed. Therefore, in order to develop eco-friendly and human-friendly products by replacing the metals used in the existing retort packaging materials, the possibility of substitution was examined using cellulose nanofibers, a natural material. As a result, it can be seen that all functions can be replaced according to the existing long-term storage characteristics for retort packaging films. In particular, not only oxygen permeability and water vapor permeability, which are one of the most important factors, but also heat resistance, which is heating durability, is evaluated as applicable to commercialization compared to products using metals currently in use.